File:Barycentriccoordinates.gif

Summary

Description
English: Barycentric coordinates are a way to identify a point inside a triangle with three numbers, which can be thought as masses on the triangle vertices, and the point inside the triangle as their center of mass.
Date
Source https://twitter.com/j_bertolotti/status/1127866653981724672
Author Jacopo Bertolotti
Permission
(Reusing this file)
https://twitter.com/j_bertolotti/status/1030470604418428929

Mathematica 11.0 code

p1 = {-1, 0};
p2 = {1, 0};
p3 = {0, 1};
c1 = 1;
c2 = 1;
c3 = 1;
plot1 = Table[
   c1 = j;
   Graphics[{Black, Disk[p1, 0.1], Disk[p2, 0.1], Disk[p3, 0.1], Line[{p1, p2, p3, p1}], White, Text[NumberForm[c1, {3, 2}], p1], Text[NumberForm[c2, {3, 2}], p2], Text[NumberForm[c3, {3, 2}], p3], Red, 
     Disk[(c1 p1 + c2 p2 + c3 p3)/(c1 + c2 + c3), 0.05]}, PlotRange -> {{-1.1, 1.1}, {-0.1, 1.1}}]
   , {j, 1, 2, 0.02}];
plot2 = Table[
   c2 = j;
   Graphics[{Black, Disk[p1, 0.1], Disk[p2, 0.1], Disk[p3, 0.1], Line[{p1, p2, p3, p1}], White, Text[NumberForm[c1, {3, 2}], p1], Text[NumberForm[c2, {3, 2}], p2], Text[NumberForm[c3, {3, 2}], p3], Red, 
     Disk[(c1 p1 + c2 p2 + c3 p3)/(c1 + c2 + c3), 0.05]}, PlotRange -> {{-1.1, 1.1}, {-0.1, 1.1}}]
   , {j, 1, 2.5, 0.02}];
plot3 = Table[
   p2 = {1, 0} - {j, 0};
   Graphics[{Black, Disk[p1, 0.1], Disk[p2, 0.1], Disk[p3, 0.1], Line[{p1, p2, p3, p1}], White, Text[NumberForm[c1, {3, 2}], p1], Text[NumberForm[c2, {3, 2}], p2], Text[NumberForm[c3, {3, 2}], p3], Red, 
     Disk[(c1 p1 + c2 p2 + c3 p3)/(c1 + c2 + c3), 0.05]}, PlotRange -> {{-1.1, 1.1}, {-0.1, 1.1}}]
   , {j, 0, 0.5, 0.01}];
ListAnimate[Join[plot1, plot2, plot3]]

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Category:CC-BY-SA-4.0#Barycentriccoordinates.gif
Category:Self-published work Category:Barycentric coordinates Category:Images with Mathematica source code Category:Animated GIF files
Category:Animated GIF files Category:Barycentric coordinates Category:CC-BY-SA-4.0 Category:Images with Mathematica source code Category:Self-published work