File:Relation1111.svg

PLATO

Summary

This Venn diagram is meant to represent the special case of a relation between two sets in set theory,
or two statements in propositional logic respectively.


Example (for sets):

      
The sets and are not equivalent in general: They are equivalent when .


      
The sets and are always equivalent: is a tautology.


This is what tells. It's shown at the top of the right one of the below diagrams.

 
c
         
A = A
11111111
 
Ac  Bc
true
A ↔ A
 
A  B
 
A  Bc
AA
 
 
A  Bc
1110011111100111
 
A  Bc
¬A  ¬B
A → ¬B
 
A  B
A  B
A ← ¬B
 
Ac B
 
A B
A¬B
 
 
A = Bc
A¬B
 
 
A B
110101101011110101101011
 
Bc
A  ¬B
A ← B
 
A
A  B
A ↔ ¬B
 
Ac
¬A  B
A → B
 
B
 
B =
AB
 
 
A = c
A¬B
 
 
A =
AB
 
 
B = c
11000101101000111100010110100011
¬B
 
 
A  Bc
A
 
 
(A  B)c
¬A
 
 
Ac  B
B
 
Bfalse
 
Atrue
 
 
A = B
Afalse
 
Btrue
 
010010010010010010010010
A  ¬B
 
 
Ac  Bc
A  B
 
 
A  B
¬A  B
 
AB
 
1000000110000001
¬A  ¬B
 
 
A  B
 
 
A = Ac
00000000
false
A ↔ ¬A
A¬A
 
These sets (statements) have complements (negations).
They are in the opposite position within this matrix.
These relations are statements, and have negations.
They are shown in a separate matrix in the box below.



Important relations
Set theory:
Logic:
subset
implication
disjoint
contrary
subdisjoint
subcontrary
equal
equivalent
complementary
contradictory



This work is ineligible for copyright and therefore in the public domain because it consists entirely of information that is common property and contains no original authorship.
Category:PD ineligible#Relation1111.svg Category:2-ary Boolean relations; black and white Venn diagrams Category:Media missing infobox template
Category:2-ary Boolean relations; black and white Venn diagrams Category:Files with no machine-readable author Category:Files with no machine-readable source Category:Media missing infobox template Category:PD ineligible