File:Complex number illustration.svg

Summary

Description
Afrikaans: 'n komplekse getal kan visueel voorgestel word as 'n getalpaar wat 'n vektor vorm op 'n diagram wat 'n Arganddiagram genoem word.
العربية: الشكل العام للعدد المركب.
বাংলা: একটি জটিল সংখ্যাকে দুইটি বাস্তব সংখ্যার একটা ক্রমজোড় হিসেবে দেখা যেতে পারে যেটা আসলে আরগ্যান্ড সমতলে একটা ভেক্টর নির্দেশ করে। এখানে (a,b) ভেক্টরটি জটিল সংখ্যা a+ib কে নির্দেশ করছে.
Ελληνικά: Ένας μιγαδικός z=a+bi παριστάνεται και με το διάνυσμα με αρχή το κέντρο των αξόνων και πέρας το σημείο (a,b).
English: A complex number can be visually represented as a pair of numbers forming a vector on a diagram called an Argand diagram, representing the complex plane. Argand diagram.
Español: Un número puede ser visualmente representado por un par de números formando un vector en un diagrama llamado diagrama de Argand.
فارسی: نمایش یک عدد مختلط در صفحه مختلط. در این شکل، a، قسمت حقیقی و b، قسمت موهومی است.
Võro: Kompleksarvo geomeetriline kujo.
Suomi: Kompleksilukua voidaan havainnollistaa kompleksitasolla, jonka vaaka-akseli kuvaa reaaliosan ja pystyakseli imaginaariosan suuruutta.
Français : Forme cartésienne d'un nombre complexe.
Gaeilge: Uimhir Choimpléascach ar an plána coimpléascach.
עברית: יצוג חזותי נפוץ של המספרים המרוכבים הוא בשילוב של ציר המספרים הרגיל, ובמאונך לו ציר דומה למספרים מדומים, כאשר המספרים המרוכבים מתקבלים מחיבור נקודות על שני הצירים.
हिन्दी: किसी समिश्र संख्या का अर्गेन्ड आरेख पर प्रदर्शन.
Latviešu: Kompleksu skaitli vizuāli var attēlot kā vektoru ar divām komponentēm jeb kā punktu plaknē.
മലയാളം: മിശ്ര സംഖ്യകളെ, ആർഗണ്ട് രേഖാചിത്രത്തിൽ ഒരു വെക്ടർ രൂപവത്കരിക്കുന്ന ഒരു ജോഡി സംഖ്യകളായി ചിത്രീകരിക്കാം.
Polski: Liczby zespolone mogą być przedstawione jako współrzędne wektora na płaszczyźnie zespolonej. Związek pomiędzy liczbą zespoloną i wskazem.
Português: Um número complexo representado como um par ordenado de números reais compondo um vetor bidimensional no Plano de Argand-Gauss.
Русский: Геометрическое представление комплексного числа.
Illustration of a complex number
Date 14 January 2008 (original upload date)
Source Own work (Original text: self-made)
Author Wolfkeeper at English Wikipedia
Other versions

Derivative works of this file:

Licensing

Wolfkeeper at English Wikipedia, the copyright holder of this work, hereby publishes it under the following licenses:
GNU head Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.
Category:License migration redundant#Complex%20number%20illustration.svgCategory:GFDL#Complex%20number%20illustration.svg
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported, 2.5 Generic, 2.0 Generic and 1.0 Generic license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Category:CC-BY-SA-3.0,2.5,2.0,1.0#Complex%20number%20illustration.svg
You may select the license of your choice.
Category:Self-published work

Original upload log

The original description page was here. All following user names refer to en.wikipedia.
  • 2008-01-14 12:28 Wolfkeeper 249×328×0 (53238 bytes)
  • 2008-01-14 12:22 Wolfkeeper 249×328×0 (54383 bytes) {{Information |Description= |Source=self-made |Date= |Location= |Author= |Permission= |other_versions={{DerivativeVersions|Complex number illustration modarg.svg}} }}
Category:Complex analysis Category:Complex plane
Category:CC-BY-SA-3.0,2.5,2.0,1.0 Category:Complex analysis Category:Complex plane Category:Files with derivative versions Category:GFDL Category:License migration redundant Category:Self-published work