File:Daubechies4-functions.svg

Summary

Description
English: Daubechies 4 tap wavelet and scaling functions
Date
Source Own work
Author LutzL
Other versions Daubechies4-functions.png

Licensing

I, the copyright holder of this work, hereby publish it under the following licenses:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Category:CC-BY-SA-3.0#Daubechies4-functions.svg
GNU head Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.
Category:License migration redundant#Daubechies4-functions.svgCategory:GFDL#Daubechies4-functions.svg
You may select the license of your choice.
Category:Self-published work


file daubechies.magma

see en:Magma computer algebra system, with link for an online calculator.

R<I>:=ComplexField(30);
LP<Z> := LaurentSeriesRing(R);
T:=(-Z+2-Z^-1)/4;

TR<U>:=PowerSeriesRing(R);
Pol<X>:=PolynomialRing(R);

readi A,"What accuracy should the wavelets have?";

PolarFactorization:=function(A)
	pp:=Truncate( (1-U+O(U^A))^-A );
	pp:=Evaluate(pp,X);
	p:=LP!1;
	for rr in Roots(pp) do
		r:=rr[1];r;
		for ff in Roots(X^2+(4*r-2)*X+1) do
			f:=ff[1];
			if Abs(f) ge 1 then p*:=Z-f; end if;
		end for;
	end for;
	p1:=Evaluate(p,1);
	return LP![ Real(c): c in Eltseq(p/p1) ],pp;
end function;

p,p2:=PolarFactorization(A);p;a:=2^(1-A)*(1+Z)^A*p;a2:=(1-X)^A*p2;
"Scaling sequence",Coefficients(a),"product filter", Coefficients(a2);
	

Decimation:= function(c)
	return LP![ Coefficient(c,2*k): k in [0..Degree(c) div 2+2] ];
end function;

// Power iteration for the values of the scaling function at integer locations 
shape := LP!(Z^A);
for i := 1 to 10 do
	for k := 1 to 10 do
		shape := Decimation(a*shape); shape := shape/Evaluate(shape,1);
	end for;
	shape:=LP![ R!(1+Coefficient(shape,k))-1: k in [0..Degree(shape)] ];
end for;

wave := LP![ (-1)^k*Coefficient(a,2*A-k): k in [1..2*A] ];
scal := shape;

dx := 1; supp := 2*A-1; pow:=1;
for i := 1 to 4 do
	scal := scal*LP!Evaluate(a,Z^pow);
	dx /:=2; supp *:=2; pow*:=2;
end for;

wave := scal*LP!Evaluate(wave,Z^pow);	
scal := scal*LP!Evaluate(a,Z^pow);
dx /:=2; supp *:=2; pow*:=2;

a2;

fp := Open(Sprintf("daub%o-scal.dat",A),"w");
RO:=RealField(12); 
for k := 1 to supp do
	fprintf fp, "%o\t%o\t%o\t%o\t%o\n",RO!(k*dx),
	RO!Coefficient(scal,k),
	RO!Coefficient(wave,k),
	RO!Abs(Evaluate(scal,Exp(I*2*Pi(RO)*dx^2*k))*dx),
	RO!Abs(Evaluate(wave,Exp(I*2*Pi(RO)*dx^2*k))*dx);
end for;
Flush(fp);
 
This W3C-unspecified plot was created with Gnuplot.
Category:Unspec SVG created with Gnuplot#00060610Daubechies4-functions.svg
set data style lines
set zeroa
set key bottom
set term svg enhanced size 1000,750 fsize 24
set out "Daubechies4-functions.svg"
set title "Daubechies 4 tap wavelet"
pl "daub2-scal.dat" u 1:2 ti "scaling function" w lines lt 3 lw 3,\
   "daub2-scal.dat" u 1:3 ti "wavelet function" w lines lt 1 lw 3
set out
Category:Daubechies wavelets
Category:CC-BY-SA-3.0 Category:Daubechies wavelets Category:GFDL Category:License migration redundant Category:Pages using deprecated source tags Category:Self-published work Category:Unspec SVG created with Gnuplot