File:Wrc.svg

Summary

Description
English: calculated diagram of soil with model formula (van Genuchten, 1980) [1]
Deutsch: Der Saugdruck von Sand, Schluff, Lehm und Ton. Neu berechnetes Diagramm verschiedener Bodenarten mit Modelldaten gemäß van Genuchten, 1980
Date
Source Own work
Author FMoeckel, DufterKunde
Permission
(Reusing this file)
http://de.wikipedia.org/wiki/Datei:Wrc.svg
Other versions Wrc.jpg
 W3C-validity not checked.Category:Unchecked SVG validity

Van Genuchten model of soil water retention ( – relative soil water content, – soil matric potential):

with

Parameter List
Soil Soil
SsSand0.0430190.3706870.0874241.575350.36522
UuSilt00.4212560.0034051.344750.25637
LuLoam-Silt00.4212170.0133451.126140.11201
TtClay00.5505410.0068121.081550.07540
GNU Octave source code
function van_genuchten()
	%* Encdoing: UTF-8.
	%* Written by DufterKunde
	%  https://de.wikipedia.org/wiki/Benutzer:DufterKunde
	%  to produce a corrected version of
	%  https://commons.wikimedia.org/wiki/File:Wrc.svg .
	%  It is supposed to be run in GNU octave 4.0,
	%  but it should also work with older versions of octave as well.
	%  Only minor changes are needed to make it run with Matlab.
	%* The plot shows the matric potential Psi_m
	%  of different types of soil as a function of the
	%  relative soil water content theta.
	%  It is based on the equation and parameters from
	%  {{cite web
	%  | url=https://www.bgr.bund.de/DE/Themen/Boden/Netzwerke/Adhocag/Downloads/Ergaenzungsregel_1_18.pdf
	%  | title=Verknüpfungsregel 1.18 – Parameter für das Modell einer stetigen Funktion der θ(ψ)-Beziehung
	%  | accessdate=2015-07-29
	%  | author=Ad-hoc-AG Boden
	%  | coauthors=
	%  | date=2004-09-17
	%  | format=PDF, 242 KiB
	%  | publisher=Staatlichen Geologischen Dienste und BGR
	%  | language=German
	%  }}
	%  theta = theta_r + (theta_s - theta_r)/(1 + (alpha*(-psi))^n)^m
	%  with
	%  m     = 1 - 1/n .
	%* Ss = Sand, Uu = Silt, Lu = Loam-Silt, Tt = Clay.
	%* Compliance of the output with the svg-standard validated by:
	%  https://validator.w3.org/
	%  and practical functionality tested with
	%  - Mozilla Firefox for Ubuntu 40.0,
	%  - Chromium 43.0.2357.130 Ubuntu 15.04 (64-bit)
	%  - eog (“Eye of Gnome”) 3.14.4,
	%  - Inkscape 0.91 r13725, and
	%  - SVG Check: https://tools.wmflabs.org/svgcheck/ (rsvg 2.36.1).
	
	% parameters:
	pF         = [  0     6];
	N          = 10*diff(pF) + 1;
	psi        = -logspace(pF(1),pF(2),N);
	x          = [  0     0.55];
	y          = pF;
	X          = [ 70   550   ];
	Y          = [390   30   ];
	DY         = diff(Y)/diff(y);
	Tick       =   8;
	tick       =   6;
	lgnd_wdth  =  95;
	lgnd_hght  = 120;
	lgnd_strk  =  35;
	lgnd_pad   =   4;
	lgnd_Pad   =  12;
	today      = clock();
	
	% Sand:
	theta_r_ss = 0.043019;
	theta_s_ss = 0.370687;
	alpha_ss   = 0.087424;
	n_ss       = 1.57535;
	theta_ss   = theta_vg(psi, theta_r_ss, theta_s_ss, alpha_ss, n_ss);
	
	% Silt:
	theta_r_uu = 0;
	theta_s_uu = 0.421256;
	alpha_uu   = 0.003405;
	n_uu       = 1.34475;
	theta_uu   = theta_vg(psi, theta_r_uu, theta_s_uu, alpha_uu, n_uu);
	
	% Loam-Silt:
	theta_r_lu = 0;
	theta_s_lu = 0.421217;
	alpha_lu   = 0.013345;
	n_lu       = 1.12614;
	theta_lu   = theta_vg(psi, theta_r_lu, theta_s_lu, alpha_lu, n_lu);
	
	% Clay:
	theta_r_tt = 0;
	theta_s_tt = 0.550541;
	alpha_tt   = 0.006812;
	n_tt       = 1.08155;
	theta_tt   = theta_vg(psi, theta_r_tt, theta_s_tt, alpha_tt, n_tt);
	
	% generate svg-file:
	fid        = fopen ("Wrc.svg","w");
	fprintf(fid,["<?xml version=\"1.0\" encoding=\"utf-8\"?>\n", ...
	             "<svg\n", ...
	             "xmlns=\"http://www.w3.org/2000/svg\"\n", ...
	             "width=\"600\" height=\"450\"\n", ...
	             ">\n",...
	             "\t<title>Water Retention Curves</title>\n"]);
	fprintf(fid,["\t<desc>\n",...
	             "\t\t* This is a corrected version of\n",...
	             "\t\t  https://commons.wikimedia.org/wiki/File:Wrc.svg\n",...
	             "\t\t  generated by DufterKunde\n",...
	             "\t\t  https://de.wikipedia.org/wiki/Benutzer:DufterKunde\n",...
	             "\t\t  on %i-%02i-%02i.\n",...
	             "\t\t* The plot shows the matric potential Psi_m\n",...
	             "\t\t  of different types of soil as a function of the\n",...
	             "\t\t  relative soil water content theta.\n",...
	             "\t\t  It is based on the equation and parameters from\n",...
	             "\t\t  {{cite web\n",...
	             "\t\t  | url=https://www.bgr.bund.de/DE/Themen/Boden/Netzwerke/Adhocag/Downloads/Ergaenzungsregel_1_18.pdf\n",...
	             "\t\t  | title=Verknüpfungsregel 1.18 – Parameter für das Modell einer stetigen Funktion der θ(ψ)-Beziehung\n",...
	             "\t\t  | accessdate=2015-07-29\n",...
	             "\t\t  | author=Ad-hoc-AG Boden\n",...
	             "\t\t  | coauthors=\n",...
	             "\t\t  | date=2004-09-17\n",...
	             "\t\t  | format=PDF, 242 KiB\n",...
	             "\t\t  | publisher=Staatlichen Geologischen Dienste und BGR\n",...
	             "\t\t  | language=German\n",...
	             "\t\t  }}\n",...
	             "\t\t  theta = theta_r + (theta_s - theta_r)/(1 + (alpha*(-psi))^n)^m\n",...
	             "\t\t  with\n",...
	             "\t\t  m     = 1 - 1/n .\n",...
	             "\t\t* Ss = Sand, Uu = Silt, Lu = Loam-Silt, Tt = Clay.\n",...
	             "\t\t* This svg-file has been generated line-by-line\n",...
	             "\t\t  by a GNU Octave function.\n",...
	             "\t\t* Compliance with the svg standard validated by:\n",...
	             "\t\t  https://validator.w3.org/\n",...
	             "\t\t  and practical functionality tested with\n",...
	             "\t\t  - Mozilla Firefox for Ubuntu 40.0,\n",...
	             "\t\t  - Chromium 43.0.2357.130 Ubuntu 15.04 (64-bit)\n",...
	             "\t\t  - eog (“Eye of Gnome”) 3.14.4,\n",...
	             "\t\t  - Inkscape 0.91 r13725, and\n",...
	             "\t\t  - SVG Check: https://tools.wmflabs.org/svgcheck/ (rsvg 2.36.1).\n",...
	             "\t</desc>\n"],today(1),today(2),today(3));
	fprintf(fid,"\t<g shape-rendering=\"geometricPrecision\" stroke=\"black\" stroke-width=\"2\">\n");
	fprintf(fid,"\t\t<!-- horizontal grid lines: -->\n");
	fprintf(fid,"\t\t<g stroke=\"#c0c0c0\">\n");
	for k = (pF(1) + 1) : (pF(2) - 1)
		Y_grid = Y(1) + k * DY
		fprintf(fid,"\t\t\t<polyline points=\"%i,%i %i,%i\"/>\n",...
		        X(1),Y_grid,X(2),Y_grid);
	endfor
	fprintf(fid,"\t\t</g>\n");
	fprintf(fid,"\t\t<!-- actual graph data: -->\n");
	fprintf(fid,"\t\t<g fill=\"none\" stroke-width=\"3\">\n");
	write_svg_dat(fid,psi(1:end-10),theta_ss(1:end-10),x,y,X,Y,"0000ff","Ss = Sand");
	write_svg_dat(fid,psi,theta_uu,x,y,X,Y,"ff0000","Uu = Silt");
	write_svg_dat(fid,psi,theta_lu,x,y,X,Y,"00ff00","Lu = Loam-Silt");
	write_svg_dat(fid,psi,theta_tt,x,y,X,Y,"b000b0","Tt = Clay");
	fprintf(fid,"\t\t</g>\n");
	fprintf(fid,"\t\t<!-- ticks on x-axis: -->\n");
	for k = [0.1 : 0.1 : 0.5]
		X_grid = X(1) + k * diff(X)/diff(x)
		fprintf(fid,"\t\t<polyline points=\"%5.2f,%i %5.2f,%i\"/>\n",...
		        X_grid,Y(1),X_grid,Y(1)-Tick);
		fprintf(fid,"\t\t<polyline points=\"%5.2f,%i %5.2f,%i\"/>\n",...
		        X_grid,Y(2)+Tick,X_grid,Y(2));
	endfor
	fprintf(fid,"\t\t<!-- major ticks on y-axis: -->\n");
	for k = (pF(1) + 1) : (pF(2) - 1 )
		Y_grid = Y(1) + k * DY;
		fprintf(fid,"\t\t<polyline points=\"%i,%i %i,%i\"/>\n",...
		        X(1),Y_grid,X(1)+Tick,Y_grid);
		fprintf(fid,"\t\t<polyline points=\"%i,%i %i,%i\"/>\n",...
		        X(2)-Tick,Y_grid,X(2),Y_grid);
	endfor
	fprintf(fid,"\t\t<!-- minor log-ticks on left y-axis: -->\n");
	for k = pF(1) : (pF(2) - 1)
		for m = 2 : 9
			y_grid = Y(1) + ( k + log10(m) ) * DY;
			fprintf(fid,"\t\t<polyline points=\"%i,%5.2f %i,%5.2f\"/>\n",...
			        X(1),y_grid,X(1)+tick,y_grid);
		endfor
	endfor
	fprintf(fid,"\t\t<!-- legend: -->\n");
	fprintf(fid,["\t\t<rect x=\"%i\" y=\"%i\" width=\"%i\" " ,...
	             "height=\"%i\" stroke=\"black\" fill=\"white\"/>\n"],...
	        X(2)-lgnd_wdth-lgnd_Pad,Y(2)+lgnd_Pad,lgnd_wdth,lgnd_hght);
	Y_lgnd = Y(2)+1.5*Tick + [0.5 1.5 2.5 3.5]/4*lgnd_hght
	X_lgnd = [X(2)-lgnd_wdth-lgnd_pad X(2)-lgnd_wdth-lgnd_pad+lgnd_strk];
	fprintf(fid,"\t\t<g fill=\"none\" stroke-width=\"3\">\n");
	fprintf(fid,"\t\t\t<polyline stroke=\"#0000ff\" points=\"%i,%i %i,%i\"/>\n",...
	        X_lgnd(1),Y_lgnd(1),X_lgnd(2),Y_lgnd(1));
	fprintf(fid,"\t\t\t<polyline stroke=\"#ff0000\" points=\"%i,%i %i,%i\"/>\n",...
	        X_lgnd(1),Y_lgnd(2),X_lgnd(2),Y_lgnd(2));
	fprintf(fid,"\t\t\t<polyline stroke=\"#00ff00\" points=\"%i,%i %i,%i\"/>\n",...
	        X_lgnd(1),Y_lgnd(3),X_lgnd(2),Y_lgnd(3));
	fprintf(fid,"\t\t\t<polyline stroke=\"#b000b0\" points=\"%i,%i %i,%i\"/>\n",...
	        X_lgnd(1),Y_lgnd(4),X_lgnd(2),Y_lgnd(4));
	fprintf(fid,"\t\t</g>\n");
	fprintf(fid,"\t\t<!-- axis-box: -->\n");
	fprintf(fid,["\t\t<polygon points=\"%i,%i %i,%i %i,%i %i,%i\" ",...
	             "fill=\"none\" stroke=\"black\" stroke-width=\"2\"/>\n"],...
	        X(1),Y(2),X(2),Y(2),X(2),Y(1),X(1),Y(1));
	fprintf(fid,"\t\t<!-- text: -->\n");
	fprintf(fid,"\t\t<g stroke-width=\"0\" fill=\"black\" font-family=\"Helvetica\" font-size=\"24\">\n");
	fprintf(fid,"\t\t\t<!-- x-axis annotation: -->\n");
	fprintf(fid,"\t\t\t<text x=\"%i\" y=\"%i\" text-anchor=\"middle\" font-style=\"italic\">θ</text>\n",...
	        mean(X)-10,445);
	fprintf(fid,"\t\t\t<text x=\"%i\" y=\"%i\" text-anchor=\"middle\">0</text>\n",...
	        X(1),420);
	for k = [0.1 : 0.1 : 0.5]
		X_grid = X(1) + k * diff(X)/diff(x);
		fprintf(fid,"\t\t\t<text x=\"%i\" y=\"%i\" text-anchor=\"middle\">%3.1f</text>\n",...
		X_grid,420,k);
	endfor
	fprintf(fid,"\t\t\t<!-- y-axis annotation: -->\n");
	fprintf(fid,"\t\t\t<text x=\"%i\" y=\"%i\" transform=\"rotate(-90)\" text-anchor=\"end\">p</text>\n",...
	        -mean(Y)+ 7,593);
	fprintf(fid,"\t\t\t<text x=\"%i\" y=\"%i\" transform=\"rotate(-90)\" text-anchor=\"start\" font-style=\"italic\">F</text>\n",...
	        -mean(Y)+ 7,593);
	fprintf(fid,"\t\t\t<text x=\"%i\" y=\"%i\" transform=\"rotate(-90)\" text-anchor=\"end\" font-style=\"italic\">–ψ</text>\n",...
	        -mean(Y)-20,19);
	fprintf(fid,"\t\t\t<text x=\"%i\" y=\"%i\" transform=\"rotate(-90)\" text-anchor=\"start\" font-size=\"18\">m</text>\n",...
	        -mean(Y)-20,26);
	fprintf(fid,"\t\t\t<text x=\"%i\" y=\"%i\" transform=\"rotate(-90)\" text-anchor=\"start\">/ hPa</text>\n",...
	        -mean(Y)   ,19);
	for k = pF(1) : pF(2)
		Y_grid = Y(1) + k * DY;
		if ( k < 0 )
			fprintf(fid,"\t\t\t<text x=\"%i\" y=\"%i\" text-anchor=\"end\">–</text>\n",...
			        X(2)+8,Y_grid+10);
		endif
		fprintf(fid,"\t\t\t<text x=\"%i\" y=\"%i\" text-anchor=\"start\">%i</text>\n",...
		        X(2)+8,Y_grid+10,abs(k));
		fprintf(fid,"\t\t\t<text x=\"%i\" y=\"%i\" text-anchor=\"end\">10</text>\n",...
		        X(1)-15,Y_grid+10);
		if ( k >= 0 )
			fprintf(fid,"\t\t\t<text x=\"%i\" y=\"%i\" text-anchor=\"start\" font-size=\"18\">%i</text>\n",...
			        X(1)-15,Y_grid-2,k);
		else
			fprintf(fid,"\t\t\t<text x=\"%i\" y=\"%i\" text-anchor=\"start\" font-size=\"18\">–%i</text>\n",...
			        X(1)-15,Y_grid-2,-k);
		endif
	endfor
	fprintf(fid,"\t\t\t<!-- legend: -->\n");
	fprintf(fid,"\t\t\t<text x=\"%i\" y=\"%i\" text-anchor=\"start\">Ss</text>\n",...
	        X_lgnd(2)+lgnd_Pad,Y_lgnd(1)+8);
	fprintf(fid,"\t\t\t<text x=\"%i\" y=\"%i\" text-anchor=\"start\">Uu</text>\n",...
	        X_lgnd(2)+lgnd_Pad,Y_lgnd(2)+8);
	fprintf(fid,"\t\t\t<text x=\"%i\" y=\"%i\" text-anchor=\"start\">Lu</text>\n",...
	        X_lgnd(2)+lgnd_Pad,Y_lgnd(3)+8);
	fprintf(fid,"\t\t\t<text x=\"%i\" y=\"%i\" text-anchor=\"start\">Tt</text>\n",...
	        X_lgnd(2)+lgnd_Pad,Y_lgnd(4)+8);
	fprintf(fid,["\t\t</g>\n",...
	             "\t</g>\n",...
	             "</svg>"]);
	fclose(fid);
	
endfunction

function theta = theta_vg(psi, theta_r, theta_s, alpha, n)
	% van Genuchten equation
	m = 1 - 1/n
	theta = theta_r + (theta_s - theta_r)./(1 + (alpha*(-psi)).^n).^m;
endfunction

function write_svg_dat(fid,psi,theta,x,y,X,Y,cl,name)
	Y_dat = ( log10(-psi) - y(1) )*diff(Y)/diff(y) + Y(1);
	X_dat = ( theta       - x(1) )*diff(X)/diff(x) + X(1);
	fprintf(fid,"\t\t\t<polyline stroke=\"#%s\" points=\"",cl);
	for	k = 1 : (length(psi) - 1)
		fprintf(fid,"%4.2f,%i ",X_dat(k),Y_dat(k));
	endfor
	fprintf(fid,["%4.2f,%i\">\n",...
	             "\t\t\t\t<title>%s</title>\n",...
	             "\t\t\t</polyline>\n"],X_dat(end),Y_dat(end),name);
endfunction

Reference

  1. Ad-hoc-AG Boden (2004-09-17). Verknüpfungsregel 1.18 – Parameter für das Modell einer stetigen Funktion der θ(ψ)-Beziehung (in German) (PDF, 242 KiB). Staatlichen Geologischen Dienste und BGR. Archived from the original on 2016-03-04. Retrieved on 2015-07-29.

Licensing

Public domain I, the copyright holder of this work, release this work into the public domain. This applies worldwide.
In some countries this may not be legally possible; if so:
I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.
Category:Self-published work#Wrc.svgCategory:PD-self#Wrc.svg Category:Soil science diagrams Category:Hydrological diagrams Category:Images with Octave source code
Category:Hydrological diagrams Category:Images with Octave source code Category:PD-self Category:Self-published work Category:Soil science diagrams Category:Unchecked SVG validity