File:Magnetsphere compasses.svg

Summary

Description
English: Pointings of magnetic compasses around a spherical (homogeneously magnetized) magnet. The direction of each compass needle is computed with the exact formula, given in the source code. Outside of the sphere, the field resembles that of an ideal dipole.
Date
Source Own work
Author Geek3
SVG development
InfoField
Source code
InfoField

Python code

Python svgwrite code
#!/usr/bin/python3
# -*- coding: utf8 -*-

try:
    import svgwrite
except ImportError:
    print('requires svgwrite library: https://pypi.org/project/svgwrite/')
    # documentation at https://svgwrite.readthedocs.io/
    exit(1)

import numpy as np
from math import *


def Bfield_sphere(xy, center, phi, R, m):
    '''
    xy: position where the field is probed
    center: position of the sphere
    phi: rotation angle from the vertical countercolockwise
    R: radius of the sphere
    m: magnetic moment
    '''
    r = np.array(xy) - np.array(center)
    rabs = np.linalg.norm(r)
    mvec = m * np.array([-sin(phi), cos(phi)])
    
    if rabs >= R:
        B = (3 * r * mvec.dot(r) - mvec * rabs**2) / rabs**5 / (4*pi)
    else:
        B = 2 * mvec / R**3 / (4*pi)
    return B


name = 'Magnetsphere_compasses'
size = 600, 600
spheres = [{'c':[0, 0], 'R':85., 'phi':0., 'm':1.}]
needles_d = 40.
needle_w = 6.
needle_l = 16.
needle_c = 2.5

doc = svgwrite.Drawing(name + '.svg', profile='full', size=size)
doc.set_desc(name, 'https://commons.wikimedia.org/wiki/File:' + name +
    '.svg\nrights: Creative Commons Attribution ShareAlike license')
doc.add(doc.rect(id='background', insert=(0, 0), size=size, fill='#ffffff', stroke='none'))
g = doc.add(doc.g(id='image',
    transform='translate({:.0f}, {:.0f}) scale(1,-1)'.format(size[0]/2., size[1]/2.)))

# draw some compass needles
needle = doc.defs.add(doc.g(id='needle'))
needle.add(doc.path(d='M {:.3f},{:.3f} L {:.3f},{:.3f} L {:.3f},{:.3f} L {:.3f},{:.3f} Z'.format(
    -needle_w, 0, 0, needle_l, needle_w, 0, 0, -needle_l),
    fill='#00cc00', stroke='none'))
needle.add(doc.path(d='M {:.3f},{:.3f} L {:.3f},{:.3f} L {:.3f},{:.3f} Z'.format(
    -needle_w, 0, 0, needle_l, needle_w, 0),
    fill='#ff0000', stroke='none'))
needle.add(doc.path(d='M {:.3f},{:.3f} L {:.3f},{:.3f} L {:.3f},{:.3f} L {:.3f},{:.3f} Z'.format(
    -needle_w, 0, 0, needle_l, needle_w, 0, 0, -needle_l),
    fill='none', stroke='#000000', stroke_width=2,
    stroke_linejoin='miter', stroke_miterlimit=10))
needle.add(doc.circle(center=(0, 0), r='{:.3f}'.format(needle_c),
    fill='#ffffff', stroke='#000000', stroke_width=2))

needles_nx = round(size[0] / needles_d)
needles_ny = round(size[1] / needles_d)
needles_x = (np.arange(needles_nx) + 0.5) * needles_d - size[0] / 2.
needles_y = (np.arange(needles_ny) + 0.5) * needles_d - size[1] / 2.

needles = g.add(doc.g(id='needles'))

for y in needles_y:
    for x in needles_x:
        B = np.sum([Bfield_sphere([x, y],
            s['c'], s['phi'], s['R'], s['m']) for s in spheres], axis=0)
        direction = atan2(B[1], B[0])
        needles.add(doc.use(href='#needle', insert=(0, 0),
            transform='translate({:.3f},{:.3f}) rotate({:.2f})'.format(
            x, y, degrees(direction-pi/2))))

# draw the sphere magnets
for isp, s in enumerate(spheres):
    R = s['R']
    magnet = g.add(doc.g(id='magnet' + str(isp),
        transform='translate({:.3f},{:.3f}) rotate({:.2f})'.format(
        s['c'][0], s['c'][1], degrees(s['phi']))))
    mgrad = doc.defs.add(doc.radialGradient(id='magnetGrad' + str(isp), r=1.4*R,
        center=(0,.2*R), focal=(-.4*R,.6*R), gradientUnits='userSpaceOnUse'))
    for of, c, op in ((0, '#ffffff', 0.7), (0.04, '#ffffff', 0.6),
            (0.11, '#ffffff', 0.4), (0.22, '#ffffff', 0.2),
            (0.7, '#666666', 0.3), (1, '#000000', 0.6)):
        mgrad.add_stop_color(of, c, op)
    
    magnet.add(doc.circle(center=(0, 0), r=R, fill='#00cc00', stroke='none'))
    magnet.add(doc.path(d='M -{0},0 A {0},{0} 0 0 0 {0},0 L -{0},0 Z'.format(R),
        fill='#ff0000', stroke='none'))
    magnet.add(doc.circle(center=(0, 0), r=R, stroke_width=4.,
        stroke='#000000', fill='url(#magnetGrad' + str(isp) + ')',
        transform='rotate({})'.format(degrees(-s['phi']))))
    for s, txt in ((1, 'S'), (-1, 'N')):
        magnet.add(doc.text(txt, font_size='120px', stroke='none', fill='#000000',
            transform='translate(0, {0}) scale({1},-{1})'.format(-0.22 * R, 0.005*R),
            y=[1.4 * s * R], text_anchor='middle', font_family='Bitstream Vera Sans'))

doc.save(pretty=True)

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Category:CC-BY-SA-4.0#Magnetsphere%20compasses.svg
Category:Self-published work Category:Compass needles in magnetic fields Category:Field lines around magnets (image set) Category:Field lines around magnets Category:Photos by User:Geek3
Category:CC-BY-SA-4.0 Category:Compass needles in magnetic fields Category:Field lines around magnets Category:Field lines around magnets (image set) Category:Photos by User:Geek3 Category:Self-published work Category:Valid SVG created with Python code