File:Ironfilings magnetsphere.svg

Summary

Description
English: Magnetic fields can be visualized with iron filings, that align along the magnetic field direction. Here the magnetic field of a homogeneously magnetized spherical magnet was accurately computed, and the field is shown with simulated randomly placed iron filings. The density of filings is also proportional to the field strength. The field is strongest around the magnetic poles.
Date
Source Own work
Author Geek3
Other versions
SVG development
InfoField
Source code
InfoField

Python code

Python svgwrite code
#!/usr/bin/python3
# -*- coding: utf8 -*-

try:
    import svgwrite
except ImportError:
    print('requires svgwrite library: https://pypi.org/project/svgwrite/')
    # documentation at https://svgwrite.readthedocs.io/
    exit(1)


import numpy as np
import random
from scipy.integrate import solve_ivp
from scipy.optimize import minimize
from math import *


name = 'Ironfilings_magnetsphere'
size = 600, 600
spheres = [{'c':[0, 0], 'R':85., 'phi':0., 'm':1.}]
n_filings = 2500
l_filings = 24


def vnorm(x):
    return x / hypot(*x)


def inside(p, w2, h2):
    return fabs(p[0]) <= w2 and fabs(p[1]) <= h2


def Bfield_sphere(xy, center, phi, R, m):
    '''
    xy: position where the field is probed
    center: position of the sphere
    phi: rotation angle from the vertical counterclockwise
    R: radius of the sphere
    m: magnetic moment
    '''
    r = np.array(xy) - np.array(center)
    rabs = np.linalg.norm(r)
    mvec = m * np.array([-sin(phi), cos(phi)])
    
    if rabs >= R:
        B = (3 * r * mvec.dot(r) - mvec * rabs**2) / rabs**5 / (4*pi)
    else:
        B = 2 * mvec / R**3 / (4*pi)
    return B


def Bfield(xy):
    return np.sum([Bfield_sphere(xy,
        s['c'], s['phi'], s['R'], s['m']) for s in spheres], axis=0)


def bezier(field, p, l):
    # returns control points of a Bezier curve approximating the Bfield at p
    f = lambda t, xy: vnorm(field(xy))
    p2, p0 = solve_ivp(f, (0, -l/2), p, t_eval=[-l/4, -l/2]).y.T
    p3, p1 = solve_ivp(f, (0, l/2), p, t_eval=[l/4, l/2]).y.T
    v0 = vnorm(field(p0))
    v1 = vnorm(field(p1))
    
    if hypot(*(v1 - v0)) < 0.01:
        l0, l1 = l/3, l/3
    else:
        def err(x):
            l0, l1, t2, t4, t3 = x
            dist = 0.
            for t, pref in ((t2, p2), (t4, p), (t3, p3)):
                pc = (1-t)**3 * p0 + 3*(1-t)**2*t * (p0+l0*v0) + 3*(1-t)*t**2 * (p1-l1*v1) + t**3 * p1
                dist += hypot(*(pc - pref))**2
            return dist
        
        l0, l1 = minimize(err, [l/3., l/3., 0.25, 0.5, 0.75],
            bounds=((0, l), (0, l), (0, 1), (0, 1), (0, 1))).x[:2]
    
    p0c = p0 + v0 * l0
    p1c = p1 - v1 * l1
    
    return [p0, p0c, p1c, p1]


doc = svgwrite.Drawing(name + '.svg', profile='full', size=size)
doc.set_desc(name, 'https://commons.wikimedia.org/wiki/File:' + name + '.svg\n'
    'rights: Creative Commons Attribution ShareAlike license')
clip = doc.defs.add(doc.clipPath(id='image_clip'))
clip.add(doc.rect(insert=(-size[0]/2., -size[1]/2.), size=size))
doc.add(doc.rect(id='background', insert=(0, 0), size=size, fill='#ffffff', stroke='none'))
g = doc.add(doc.g(id='image', clip_path='url(#image_clip)',
    transform='translate({:.0f}, {:.0f}) scale(1,-1)'.format(size[0]/2., size[1]/2.)))
filings = g.add(doc.g(id='iron-filings', fill='none', stroke='black',
    stroke_width=2, stroke_linecap='round'))


Bmax = hypot(*Bfield([0,0]))

i_filings = 0
while i_filings < n_filings:
    x = random.uniform(-size[0]/2. - l_filings/2., size[0]/2. + l_filings/2.)
    y = random.uniform(-size[1]/2. - l_filings/2., size[1]/2. + l_filings/2.)
    l = random.uniform(l_filings*0.5, l_filings*1.0)
    
    if any([hypot(*(np.array([x, y]) - s['c'])) < s['R'] - l/2 for s in spheres]):
        continue
    
    B = Bfield([x, y])
    
    Brel = hypot(*B) / Bmax
    line_density = Brel**(2/3)
    line_width = 2.4 * Brel**(1/3)
    
    # use rejection sampling to reproduce field line density
    if random.random() >= line_density:
        continue
    
    points = bezier(Bfield, [x, y], l)
    
    if all([any([hypot(*(np.array(p)-s['c'])) < s['R'] for s in spheres]) for p in [ [x, y], points[0], points[-1] ] ]):
        continue
    if all([not inside(p, size[0]/2., size[1]/2.) for p in [ [x, y], points[0], points[-1] ] ]):
        continue
    
    filings.add(doc.path(
        d='M {:.1f},{:.1f} C {:.1f},{:.1f} {:.1f},{:.1f} {:.1f},{:.1f}'.format(
        *points[0], *points[1], *points[2], *points[3]),
        stroke_width='{:.1f}'.format(line_width)))
    i_filings += 1


# draw the sphere magnet
for isp, s in enumerate(spheres):
    R = s['R']
    magnet = g.add(doc.g(id='magnet' + str(isp),
        transform='translate({:.3f},{:.3f}) rotate({:.2f})'.format(
        s['c'][0], s['c'][1], degrees(s['phi']))))
    mgrad = doc.defs.add(doc.radialGradient(id='magnetGrad' + str(isp), r=1.4*R,
        center=(0,.2*R), focal=(-.4*R,.6*R), gradientUnits='userSpaceOnUse'))
    for of, c, op in ((0, '#ffffff', 0.7), (0.04, '#ffffff', 0.6),
            (0.11, '#ffffff', 0.4), (0.22, '#ffffff', 0.2),
            (0.7, '#666666', 0.3), (1, '#000000', 0.6)):
        mgrad.add_stop_color(of, c, op)
    
    magnet.add(doc.circle(center=(0, 0), r=R, fill='#00cc00', stroke='none'))
    magnet.add(doc.path(d='M -{0},0 A {0},{0} 0 0 0 {0},0 L -{0},0 Z'.format(R),
        fill='#ff0000', stroke='none'))
    magnet.add(doc.circle(center=(0, 0), r=R, stroke_width=4.,
        stroke='#000000', fill='url(#magnetGrad' + str(isp) + ')',
        transform='rotate({})'.format(degrees(-s['phi']))))
    for s, txt in ((1, 'S'), (-1, 'N')):
        magnet.add(doc.text(txt, font_size='120px', stroke='none', fill='#000000',
            transform='translate(0, {0}) scale({1},-{1})'.format(-0.22 * R, 0.005*R),
            y=[1.4 * s * R], text_anchor='middle', font_family='Bitstream Vera Sans'))

doc.save(pretty=True)

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Category:CC-BY-SA-4.0#Ironfilings%20magnetsphere.svgCategory:Self-published work
Category:Magnetised iron filings Category:Magnetic field lines Category:Photos by User:Geek3 Category:Field lines around magnets
Category:CC-BY-SA-4.0 Category:Field lines around magnets Category:Magnetic field lines Category:Magnetised iron filings Category:Photos by User:Geek3 Category:Self-published work Category:Valid SVG created with Python code