File:Algebra-Unit.svg

Summary

Description
Deutsch: Eine Algebra besitzt genau dann ein neutrales Element, wenn es einen Vektorraumhomomorphismus gibt, so dass dieses Diagramm kommutiert. In diesem Fall gilt .
Date
Source Own work
Author Markus Schmaus
Permission
(Reusing this file)
Public Domain
Other versions File:Algebra-Unit.png

Quelltext

Siehe wikipedia:de:Benutzer:Markus Schmaus/Kommutatives Diagramm

%&latex
\documentclass[a4paper]{article}
\usepackage[dvips,matrix,arrow,ps,color,line,curve,frame]{xy}
\usepackage{diagxye}

\thispagestyle{empty}

\begin{document}
$$\bfig
\Vtrianglepair/>`<-`>`>`>/<700,500>[
  k \otimes A`
  A \otimes A`
  A \otimes k`
  A
;
  \eta_A \otimes \mathrm{id}_A`
  \mathrm{id}_A \otimes \eta_A`
  \cong`
  \mu_A`
  \cong
]
\efig$$
\end{document}

Licensing

Public domain I, the copyright holder of this work, release this work into the public domain. This applies worldwide.
In some countries this may not be legally possible; if so:
I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.
Category:Self-published work#Algebra-Unit.svgCategory:PD-self#Algebra-Unit.svg Category:Commutative diagrams of binary operations Category:Images with LaTeX source code
Category:Commutative diagrams of binary operations Category:Images with LaTeX source code Category:PD-self Category:Self-published work