File:MDKQ1.svg

Summary

Description
Deutsch: Fit einer Logistischen Funktion an Messdaten
Date
Source Own work, Neufassung von File:LogistischeFunktion.png vom Benutzer de:User:Philipendula
Author Christian Schirm
SVG development
InfoField
Source code
InfoField

Python code

# This source code is public domain

import numpy
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker

G=1
k=1
f0=0.5

x = numpy.linspace(-8,8,16)[1:-1]
numpy.random.seed(50)
y =numpy.random.normal(G/(1+numpy.exp(-k*G*x)*(G/f0-1)),0.1)

err=1E8
err=numpy.mean(numpy.square(y-G/(1+numpy.exp(-k*G*x)*(G/f0-1))))
print(err,G,k,f0)
numpy.random.seed(2)
for i in range(5000):
    faktor=1+0.01*(numpy.random.rand()-.5)
    for ivar in 1,2,3:
        backup=[err,G,k,f0]
        var=backup[:]
        var[ivar]=var[ivar]*faktor
        err,G,k,f0=var

        err_neu = numpy.mean(numpy.square(y-G/(1+numpy.exp(-k*G*x)*(G/f0-1))))
        if err_neu<err:
            err=err_neu
        else:
            var[ivar]=backup[ivar]
            err,G,k,f0=var
print(err,G,k,f0,"(Fehlerquadrat minimiert)")
    
xneu = numpy.linspace(-8,8,50)
yneu = G/(1+numpy.exp(-k*G*xneu)*(G/f0-1))

xr = x
yr = G/(1+numpy.exp(-k*G*xr)*(G/f0-1))
residuen = []
for i in range(len(x)): residuen +=[ [x[i]+8, x[i]+8],[y[i]*10, yr[i]*10], 'g-']

fig = plt.figure(figsize=(4.2, 3.2))
y0 = plt.plot(*residuen[:-3], color='#60c060', linewidth=1.5)
y0, = plt.plot(*residuen[-3:],label='Residuum', color='#60c060', linewidth=1.5)
y2, = plt.plot(xneu+8,yneu*10,'r-',label='Modellfunktion')
plt.setp(y2, linewidth=1.5)
y1, = plt.plot(x+8,y*10,'o',label='Messpunkte')
plt.xlabel('x')
plt.ylabel('y')
order = y1,y2,y0
plt.legend(order,[p.get_label() for p in order],frameon=True, loc='lower right')
plt.gca().xaxis.set_major_locator(ticker.MultipleLocator(2))
plt.grid(True, alpha=0.7)
plt.tight_layout()
plt.savefig('MDKQ1.svg')

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
Creative Commons CC-Zero This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication.
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.

Category:CC-Zero#MDKQ1.svgCategory:Self-published work
Category:Regression analysis Category:Numerical analysis Category:NumPy
Category:CC-Zero Category:NumPy Category:Numerical analysis Category:Regression analysis Category:Self-published work Category:Valid SVG created with Matplotlib code