File:MDKQ1.svg
Summary
| Description |
Deutsch: Fit einer Logistischen Funktion an Messdaten |
| Date | |
| Source | Own work, Neufassung von File:LogistischeFunktion.png vom Benutzer de:User:Philipendula |
| Author | Christian Schirm |
| SVG development | |
| Source code | Python code# This source code is public domain
import numpy
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
G=1
k=1
f0=0.5
x = numpy.linspace(-8,8,16)[1:-1]
numpy.random.seed(50)
y =numpy.random.normal(G/(1+numpy.exp(-k*G*x)*(G/f0-1)),0.1)
err=1E8
err=numpy.mean(numpy.square(y-G/(1+numpy.exp(-k*G*x)*(G/f0-1))))
print(err,G,k,f0)
numpy.random.seed(2)
for i in range(5000):
faktor=1+0.01*(numpy.random.rand()-.5)
for ivar in 1,2,3:
backup=[err,G,k,f0]
var=backup[:]
var[ivar]=var[ivar]*faktor
err,G,k,f0=var
err_neu = numpy.mean(numpy.square(y-G/(1+numpy.exp(-k*G*x)*(G/f0-1))))
if err_neu<err:
err=err_neu
else:
var[ivar]=backup[ivar]
err,G,k,f0=var
print(err,G,k,f0,"(Fehlerquadrat minimiert)")
xneu = numpy.linspace(-8,8,50)
yneu = G/(1+numpy.exp(-k*G*xneu)*(G/f0-1))
xr = x
yr = G/(1+numpy.exp(-k*G*xr)*(G/f0-1))
residuen = []
for i in range(len(x)): residuen +=[ [x[i]+8, x[i]+8],[y[i]*10, yr[i]*10], 'g-']
fig = plt.figure(figsize=(4.2, 3.2))
y0 = plt.plot(*residuen[:-3], color='#60c060', linewidth=1.5)
y0, = plt.plot(*residuen[-3:],label='Residuum', color='#60c060', linewidth=1.5)
y2, = plt.plot(xneu+8,yneu*10,'r-',label='Modellfunktion')
plt.setp(y2, linewidth=1.5)
y1, = plt.plot(x+8,y*10,'o',label='Messpunkte')
plt.xlabel('x')
plt.ylabel('y')
order = y1,y2,y0
plt.legend(order,[p.get_label() for p in order],frameon=True, loc='lower right')
plt.gca().xaxis.set_major_locator(ticker.MultipleLocator(2))
plt.grid(True, alpha=0.7)
plt.tight_layout()
plt.savefig('MDKQ1.svg')
|
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
| This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication. | |
| The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
|