File:ExpIPi.gif

Summary

Description This is a demonstration that Exp(i*Pi)=-1 (called Euler's formula, or Euler's identity). It uses the formula (1+z/N)^N --> Exp(z) (as N increases). The Nth power is displayed as a repeated multiplication in the complex plane. As N increases, you can see that the final result (the last point) approaches -1, the actual value of Exp(i*pi).
Date
Source Own work
 
This diagram was created with Mathematica by n.
Category:PNG created with Mathematica#ExpIPi.gif
Author Sbyrnes321

Licensing

Public domain I, the copyright holder of this work, release this work into the public domain. This applies worldwide.
In some countries this may not be legally possible; if so:
I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.
Category:Self-published work#ExpIPi.gifCategory:PD-self#ExpIPi.gif
(* Source code written in Mathematica 6.0, by Steve Byrnes, 2008. I release this code into the public domain. *)

plot1 = Table[
  ListPlot[Table[{Re[(1 + (\[ImaginaryI] \[Pi])/n)^m], 
     Im[(1 + (\[ImaginaryI] \[Pi])/n)^m]}, {m, 0, n}], 
   PlotJoined -> True, PlotMarkers -> Automatic, 
   PlotRange -> {{-2.5, 1.1}, {0, \[Pi] + .05}}, AxesOrigin -> {0, 0},
    AxesLabel -> {"Real part", "Imaginary part"}, 
   PlotLabel -> "N = " <> ToString[n], 
   AspectRatio -> Automatic], {n, {1, 2, 3, 4, 5, 10, 20, 50, 100}}];

Export["ExpIPi.gif", plot1, "DisplayDurations" -> {2}, 
 "AnimationRepititions" -> Infinity ]
Category:Animated GIF files Category:Images with Mathematica source code Category:Planes (geometry)
Category:Animated GIF files Category:Images with Mathematica source code Category:PD-self Category:PNG created with Mathematica Category:Planes (geometry) Category:Self-published work