File:Second order transfer function.svg

Summary

Description
English: Step responses for a second order system defined by the transfer function:

where is the damping ratio and is the undamped natural frequency. The equations were obtained from here, plotted using maxima and edited in a text editor to insert the Greek alphabets in the plot. The equations are:

Date
Source Own work
Author Krishnavedala
Source code using w:python (programming language) with numpy and matplotlib toolboxes
from matplotlib.pyplot import *
from numpy import *

wt = linspace(0,15,100)
b = lambda z: sqrt(1. - z**2)
t = lambda z: arctan(b(z)/z)
h1 = lambda wt,z: 1. - exp(-z*wt)*sin(b(z)*wt+t(z))/b(z)
h2 = lambda wt: 1. - cos(wt)
h3 = lambda wt: 1. - exp(-wt)*(1.+wt)
s1 = lambda z: (z + sqrt(z**2-1.))
s2 = lambda z: (z - sqrt(z**2-1.))
h4 = lambda wt,z: 1. + ( (exp(-s1(z)*wt)/s1(z)) - \
	(exp(-s2(z)*wt)/s2(z)) ) / (2.*sqrt(z**2-1.))

fig = figure(figsize=(8,4))
ax = fig.add_subplot(111)
ax.grid(True)
ax.plot(wt,h2(wt),'g',label=r"undamped $(\zeta=0)$")
ax.plot(wt,h1(wt,.5),'b',label=r"under $(\zeta=0.5)$")
ax.plot(wt,h3(wt),'r',label=r"critical $(\zeta=1.0)$")
ax.plot(wt,h4(wt,1.5),'m',label=r"over $(\zeta=1.5)$")
ax.set_ylim(0,2)
ax.minorticks_on()

leg = ax.legend(frameon=False,handletextpad=.05)
setp(leg.get_texts(),fontsize=10)
ax.set_xlim(0,15)
ax.set_xlabel(r"$\omega t$",fontsize=15)
ax.set_ylabel("Step response",fontsize=12)
fig.savefig("Second_order_transfer_function.svg",bbox_inches="tight",\
	pad_inches=.15)
The maxima source code
beta(zeta) := sqrt(1-zeta^2);
theta(zeta) := atan(beta(zeta)/zeta);
h_under(wt) := 1 - beta(0.5)^-1*exp(-0.5*wt)*sin(wt*beta(.5)+theta(0.5));
h_un(wt) := 1 - cos(wt);
h_crit(wt) := 1 - exp(-wt) * (1+wt);
s1(zeta) := zeta+sqrt(zeta^2-1);
s2(zeta) := zeta-sqrt(zeta^2-1);
h_over(wt) := 1 + ((exp(-s1(1.5)*wt)/s1(1.5))-(exp(-s2(1.5)*wt)/s2(1.5)))/(2*sqrt(1.5^2-1));
load(draw);
draw2d(dimensions=[800,400],terminal=svg,
  user_preamble="set mxtics; set mytics;",
  grid=true, yrange=[0,2], xlabel="omega t",
  line_width=1.5, ylabel="Step response",
  key="under (zeta=0.5)",color=blue,explicit(h_under(wt),wt,0,15),
  key="critical (zeta=1)",color=red,explicit(h_crit(wt),wt,0,15),
  key="over (zeta=1.5)",color=magenta,explicit(h_over(wt),wt,0,15),
  key="undamped (zeta=0)",color=green,explicit(h_un(wt),wt,0,15)
 );

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Category:CC-BY-SA-3.0#Second%20order%20transfer%20function.svg
Category:Self-published work Category:Filter diagrams Category:Step responses Category:SVG created with Matplotlib Category:Images with Maxima CAS source code Category:Images with Python source code
Category:CC-BY-SA-3.0 Category:Filter diagrams Category:Images with Maxima CAS source code Category:Images with Python source code Category:Pages using deprecated source tags Category:SVG created with Matplotlib Category:Self-published work Category:Step responses