File:RiemannCriticalLine.svg

 
W3C-validity not checked.
Category:Unchecked SVG validity

Summary

Description
English: Graph of real (red) and imaginary (blue) parts of the critical line Re(z)=1/2 of the Riemann zeta function.
Date
Source

Own work. Made with Mathematica using the following code:

Show[Plot[{Re[Zeta[1/2+I x]], Im[Zeta[1/2+I x]]}, {x,-30, 30},AxesLabel->{"x"} , PlotStyle->{Red, Blue}, Ticks->{Table[4x-28,{x,0,14}]}, ImageSize->{800,600}], Graphics[Text[Style[\[DoubleStruckCapitalR][\[Zeta][ I x + "1/2"]],14,Red ,Background ->White],{-22,2.6} ]], Graphics[Text[Style[\[GothicCapitalI][\[Zeta][ I x + "1/2"]],14,Blue ,Background ->White],{-14,2.6} ]]]
Author Slonzor
Permission
(Reusing this file)
Public Domain
SVG development
InfoField
Source code
InfoField

Python code

Source code
import mpmath
import numpy as np
from matplotlib import pyplot as plt
plt.rcParams['svg.fonttype'] = 'path'

x = np.linspace(-30, 30, 300)
y = [complex(1,1)]*len(x)
for p, xx in enumerate(x):
    t = mpmath.nstr(mpmath.mpc(0.5 + xx*1j))
    y[p] = mpmath.zeta(t)

fig = plt.figure(figsize=[13,6])
ax = fig.add_subplot(111)

ax.spines['left'].set_position('zero')
ax.spines['right'].set_color('none')
ax.spines['bottom'].set_position('zero')
ax.spines['top'].set_color('none')
ax.spines['left'].set_smart_bounds(True)
ax.spines['bottom'].set_smart_bounds(True)
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')

ax.text(-25,2.7, '$\\Re\\left[\\zeta\\left(\\frac{1}{2}+ix\\right)\\right]$', size='xx-large', color='red')
ax.text(-15,2.7, '$\\Im\\left[\\zeta\\left(\\frac{1}{2}+ix\\right)\\right]$', size='xx-large', color='blue')

ax.plot(x, [yy.real for yy in y], label='Real', color='red')
ax.plot(x, [yy.imag for yy in y], label='Imag', color='blue')
# ax.legend(loc=(.6,.8))
ax.minorticks_on()
ax.grid(b=True, which='major', ls='-', lw=1.5)
ax.grid(b=True, which='minor', ls='--', lw=.5)
fig.savefig('RiemannCriticalLine.svg', bbox_inches='tight')

Licensing

Public domain I, the copyright holder of this work, release this work into the public domain. This applies worldwide.
In some countries this may not be legally possible; if so:
I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.
Category:Self-published work#RiemannCriticalLine.svgCategory:PD-self#RiemannCriticalLine.svg Category:Riemann zeta function
Category:PD-self Category:Riemann zeta function Category:Self-published work Category:Unchecked SVG validity Category:Valid SVG created with Matplotlib code