File:Polyreg scheffe.svg

Summary

Description
English: Plot of a cubic polynomial fit using multiple least squares to a simulated data set. Along with the point estimate, a 95% simultaneous confidence band (CB) constructed using Scheffe's method is shown.
Date
Source Own work
Author Skbkekas
Other versions

[edit]

SVG development
InfoField
 
The SVG code is valid.
 
This plot was created with Matplotlib.
Category:Valid SVG created with Matplotlib code#Polyreg%20scheffe.svg
 
The file size of this SVG plot may be irrationally large because its text has been converted to paths inhibiting translations.
Category:Path text SVG
Source code
InfoField

Python code

import numpy as np
import matplotlib.pyplot as plt
import scipy.special as sp

## Sample size.
n = 100

## Predictor values.
XV = np.random.uniform(low=-4, high=4, size=n)
XV.sort()

## Design matrix.
X = np.ones((n,4))
X[:,1] = XV
X[:,2] = XV**2
X[:,3] = XV**3

## True coefficients.
beta = np.array([0, 0.1, -0.25, -0.25], dtype=np.float64)

## True response values.
EY = np.dot(X, beta)

## Observed response values.
Y = EY + np.random.normal(size=n)*np.sqrt(20)

## Get the coefficient estimates.
u,s,vt = np.linalg.svd(X,0)
v = np.transpose(vt)
bhat = np.dot(v, np.dot(np.transpose(u), Y)/s)

## The fitted values.
Yhat = np.dot(X, bhat)

## The MSE and RMSE.
MSE = ((Y-EY)**2).sum()/(n-X.shape[1])
s = np.sqrt(MSE)

## These multipliers are used in constructing the Scheffe interval.
XtX = np.dot(np.transpose(X), X)
V = [np.dot(X[i,:], np.linalg.solve(XtX, X[i,:])) for i in range(n)]
V = np.array(V)

## The F quantile used in constructing the Scheffe interval.
QF = sp.fdtri(X.shape[1], n-X.shape[1], 0.95)

## The lower and upper bounds of the confidence band.
D = s*np.sqrt(X.shape[1]*QF*V)
LB,UB = Yhat-D,Yhat+D

## Make the plot.
plt.clf()
plt.plot(XV, Y, 'o', ms=3, color='grey')
plt.plot(XV, EY, '-', color='blue', label = "Truth")
plt.plot(XV, Yhat, '-', color='green', label = "Estimate")
plt.plot(XV, LB, '-', color='red', label = "CB")
plt.plot(XV, UB, '-', color='red')
plt.legend(frameon=False)
plt.ylim([-25,20])
plt.gca().set_yticks([-20,-10,0,10,20])
plt.xlim([-4,4])
plt.gca().set_xticks([-4,-2,0,2,4])
plt.xlabel("X")
plt.ylabel("Y")
plt.savefig("polyreg_scheffe.pdf")
plt.savefig("polyreg_scheffe.svg")

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution
This file is licensed under the Creative Commons Attribution 3.0 Unported license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
Category:CC-BY-3.0#Polyreg%20scheffe.svg
Category:Self-published work Category:Regression analysis Category:Statistical charts
Category:CC-BY-3.0 Category:Path text SVG Category:Regression analysis Category:Self-published work Category:Statistical charts Category:Valid SVG created with Matplotlib code