File:Numerical method for finding gradient of 2D scalar field (potential).svg

Summary

Description
English: Numerical method for finding gradient of 2D scalar field (potential)
Date
Source Own work
Author Adam majewski
Other versions
SVG development
InfoField
Source code
InfoField

Gnuplot code

Maxima CAS src
/*

Batch file for Maxima CAS
save as a o.mac
run maxima : 
 maxima
and then : 


batch("gradient.mac");



------ result ------

 Radius:0.1
 n:202
 Center:0.5+0.0*%i

c =  0.5  Radius around center =  0.1 
    number of points on the circle around center =  202 
dpMax =  0.0467808610702102 
iMax =  [202] 
next point in the gradient direction cMax =  0.6  t =  202 
dpMin =  4.907166291145126E-4 
iMin =  48  next point in the equipotential direction cMin =  
       0.5077683847289006-0.09969780438256293*%i  t =  24/101 
iMin =  154  next point in the equipotential direction cMin =  
       0.09940798309400527*%i+0.5108652150085474  t =  77/101 









http://riotorto.users.sourceforge.net/Maxima/sesiones/numcomplejos/index.html

http://www.enseignement.polytechnique.fr/informatique/INF478/docs/Cpp/en/c/numeric/math/atan2.html


*/
kill(all);
remvalue(all);
ratprint:false; /*  It doesn't change the computing, just the warnings. */
display2d:false;
numer: true;



/* functions */


/* 
converts complex number z = x*y*%i 
to the list in a draw format:  
[x,y] 
*/

/* give Draw List from one point*/
DrawPoint(z):=points([[float(realpart(z)), float(imagpart(z))]])$




log2(x) := float(log(x) / log(2))$



/* 
 point of the unit circle D={w:abs(w)=1 } where w=l(t) 
 t is angle in turns 
 1 turn = 360 degree = 2*Pi radians 
*/
give_unit_circle_point(t):= float(rectform(%e^(%i*t*2*%pi)))$

/* circle points */
give_circle_point(center, Radius, t) := float(rectform(center + Radius*give_unit_circle_point(t)))$







/*
https://en.wikibooks.org/wiki/Fractals/Iterations_in_the_complex_plane/MandelbrotSetExterior#Complex_potential
real potential 
potential =  log(modulus)/2^iterations




*/
Potential(c):= block(
	[i, z, n,t],
	z:0,
   	i:0,
   	n:1,
   	t: cabs(z),
   	
   	while ( i<1000  and t< 1000) 
    		do
    		( 
      			z:z*z+c,
      			t : cabs(z),
      			n:n*2,
     	 		i:i+1
    		),
    	if (t>0) then t : log2(t)/n,
    	return (t)
 	
)$

/* 
find roots : 
second(List[i]) = 0
in List

ff : endcons([t, dp],ff),
https://stackoverflow.com/questions/51543416/finding-the-root-of-the-function-from-the-list-of-function-values-in-maxima-cas
*/

GiveRoots(List,n):=block(
	[i,  rr, ii],
	
	rr:[],
	ii:[],
	
	for i:1 thru length(List)-1 step 1 do 
		if (is (sign(second(List[i])) # sign(second(List[i+1]))))
 			then (
 				rr: endcons([first(List[i]), second(List[i])],rr),
 				ii: endcons(n-i,ii)),
 			
 			
 		
	[rr,ii] /* return 2 lists */	
	


)$



/* 

gives vector from c1 to c2 

width = dp



using: 
from draw package : 
vector([x, y], [dx,dy]) 

http://maxima.sourceforge.net/docs/manual/maxima_52.html#Item_003a-vector
plots vector 
* with width [dx, dy] 
* with origin in [x, y]. 


 */
 


give_vector_color(c1, c2, r, Color, Key):=block(
	[x,y,dx,dy, s, t ],
	
	
	s : [color = Color, key = Key],
	
	/* p : abs(dp), */
	
	 
	x: realpart(c1),
	y: imagpart(c1),
	/* 
	length =  r*cabs(c2-c1)  
	angle is direction from c1 to c2 
	*/
	dx : r * (realpart(c2) - x),
	dy : r * (imagpart(c2) - y),
	
	s : cons(s, [vector([x, y], [dx,dy])])


)$


 
 
/*
circle (Center, Radius )
n points c on the above circle 


*/


give_vectors(Center, Radius, n):=block(
	/* 
	lists: 
		vv = list of v
		pp = list of dp
		ppa = list of abs(p)
		cc = list of c 
		ff = list [t,dp]
		fm = list 
	
	*/ 
	[c, cc, cMax, cMin, iMin, iMax,  vv, v,dt, t, pCenter,  dp, pp, ppa,   dpMax, dpMin,  i, Color,r, HeadLength, ff, fm, fz, fzi],
	
	/* empty lists */
	vv:[],
	cc: [],
	pp: [],
	ff: [],
	fm: [],
	fz: [],
	fzi : [],
	
	
	/* */
	pCenter : Potential(Center),
	
	
	dt : 1/n,
	t : 0,
	while (t < 1) do ( /* compute values (of c and dp) for all points on the circle */
		c : give_circle_point(Center, Radius,t),
		dp : Potential(c) - pCenter, /* https://en.wikipedia.org/wiki/Finite_difference#Relation_with_derivatives */
		/* save for the analysis and draw */
		cc : cons(c,cc),
		pp : cons(dp,pp),
		ff : endcons([t, dp],ff),
		t : t + dt		
	),
	
	
	
	/* find dpMax (= max dp)  in pp list   */
	dpMax : lmax(pp), 
	print ("dpMax = ", dpMax),
	/* if (not numberp(dpMax)) then print (" error : length(dpMax)>1 !!!!!!!"), */
	
	/* 
	find iMax = index of dpMax 
	https://stackoverflow.com/questions/43714455/find-maximum-value-and-index-in-a-maxima-list */
	iMax : sublist_indices(pp, lambda([p], p = lmax(pp))),
	print ("iMax = ", iMax),
	iMax : first(iMax), 
	cMax : cc[iMax], /* find cMax = c of dpMax */
	print("next point in the gradient direction cMax = ", cMax, " t = ", dt*iMax),
	
	
	fm: [[1-dt*(iMax-1), dpMax]], 	
	
	
	
	/* draw a gradient = vector for dpMax */
	HeadLength : Radius/40, /*  dpMax* */
	r : 1, /*  lenth of gradient vector = Radius */
	v : give_vector_color(Center, cMax, r, red, "gradient"),
	vv: cons([head_length = HeadLength] , vv),
	vv: endcons(v, vv), 
	
	
	/* remove gradient from lists */
	pp : delete(dpMax, pp),
	cc : delete (cMax, cc),
	
	
	/* find dpMin (= min dp)  in ppa list   */
	ppa : map(abs, pp),
	dpMin : lmin(ppa), 
	print ("dpMin = ", dpMin),
	
	/* 
	find iMin = index of dpMin 
	https://stackoverflow.com/questions/43714455/find-maximum-value-and-index-in-a-maxima-list */
	iMin : sublist_indices(ppa, lambda([p], p = lmin(ppa))),
	
	if notequal(length(iMin),2) 
		then (
			print(" error : length(iMin) != 2   !!!!!!!"),
			fzi: GiveRoots(ff,n),
			/* split the lists */
			fz : first(fzi),
			iMin : second(fzi)  
		),
		
	for i:1 thru length(iMin) do (
		
		
		print("iMin = ", iMin[i], " next point in the equipotential direction cMin = ", cc[iMin[i]], " t = ", dt*iMin[i] ),
		
		/* draw a vector for dpMin  using dpmax */
		r : 1, /*   */ 
		v : give_vector_color(Center, cc[iMin[i]], r, green, "equipotential"),
		vv: endcons(v, vv),
		
		/* remove gradient from lists */
		pp : delete(dpMin, pp),
		cc : delete (cc[iMin[i]], cc)
		
		
		), 
	
	
	
	
	
	
	
	
	
	/* draw rest of vectors */
	
	for i:1 thru length(cc) do (
		/* */ 
		dp : pp[i],
		if (dp < 0) then Color: gray else Color : blue,
		r : abs(dp)/dpMax, /* length of the vector is proportional to dp */
		v : give_vector_color(Center, cc[i], r , Color, ""),
		vv: endcons(v, vv) /*  cons (expr, list)   */
	
	),	
		
		
		
	[vv,ff, fm, fz] /* returns 4 lists vv and ff */




)$



/*
 compile( all); 
 */



 

/* 
210 gives error : 2 max values
0.1 gives only one green vector 
*/

Radius: 0.0001$ /* radius of the circel around center */
n: 301$
Center: 0.5+0.5*%i$

print("c = ", Center, " Radius around center = ", Radius, "number of points on the circle around center = ", n )$


/* vectors  and dp for draw */
vf : give_vectors(Center, Radius, n)$


/* split the list */
vv : first(vf)$
ff : second(vf)$
fm : third(vf)$
fz : fourth(vf)$


/* strings */
path:"~/c/mandel/p_e_angle/trace_last/test5/gradient/g3/"$ /*  if empty then file is in a home dir , path should end with "/" */ 

sc : sconcat(realpart(c),"_",imagpart(c))$
sRadius :  printf(false,"~f",Radius);
FileName:  sconcat(sc,"_",string(n), "_", sRadius)$
FullFileName: sconcat(path, FileName)$


load(draw)$

draw2d(	/* http://riotorto.users.sourceforge.net/Maxima/gnuplot/index.html */
	terminal      = svg,
	file_name = FullFileName,
	
	title = sconcat("Numerical gradient: ",string(n)," vectors showing local differences of potential: gray = negative, blue = positive, red = max positive (gradient)"),
	dimensions = [1000, 1000],
	xlabel     = "cx ",
  	ylabel     = "cy",

	/*
	xrange      = [-5,5],
       	yrange      = [-5,5],
           */
     	/* circle https://math.stackexchange.com/questions/588180/how-to-plot-circle-with-maxima/588621#588621    */
     	
     	nticks = 100,
     	fill_color  = white,
        color       = gray,
        transparent = true,
        line_width  = 1,
        key = "circle around center c ",
        ellipse (realpart(Center), imagpart(Center), Radius, Radius, 0, 360), 
        
        
        
        /* vectors */
        line_width = 2, 
        line_type = solid,
        head_angle = 10, /* the angle, in degrees, between the arrow heads and the segment. Default value: 45 */
        head_both = false,
        head_type = filled,
        key = "",
        /* color = blue,     */
        
	             
	vv,
	/* */
	point_type = filled_circle,
	/*point_size    =  0.5,*/
	color = black,
	key = "center c",
	DrawPoint(Center)
		            
)$


/* function graph */
draw2d(	/* http://riotorto.users.sourceforge.net/Maxima/gnuplot/index.html */
	terminal      = svg,
	file_name = sconcat(FullFileName,"_s"),
	
	title = sconcat("numerical aproximation of the gradient as a maximal finite difference of points on the circle around center"),
	dimensions = [1000, 1000],
	xlabel     = "t = angle in turns of point on the circle around center",
  	ylabel     = "dp = finite difference",

	/*
	xrange      = [-5,5],
       	yrange      = [-5,5],
           */
     	grid = true,
     	ytics = { 0, second(first(fm))},
        xtics      = {0,first(first(fm)),first(first(fz)), 0.5,first(second(fz)),1}, /* set of numbers */
        /*xtics_axis = true,             plot tics on x-axis */
         xaxis       = true, 
        axis_top         = false,
  	axis_right       = false,
        color = blue,  
        points(ff), 
        key = "maximum", 
        color = red,
        points(fm),
        key = "roots",
        color = green,
        points(fz)
        
	             
	
		            
)$



stringout(sconcat(path,FileName,".txt"),values)$
print("files ", FileName, ".svg and .txt saved to the ", path, " directory")$
I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Category:CC-BY-SA-4.0#Numerical%20method%20for%20finding%20gradient%20of%202D%20scalar%20field%20(potential).svg
Category:Self-published work Category:Images with Maxima CAS source code Category:Gradient fields Category:Complex quadratic map Category:Scalar fields Category:Scalar potential
Category:CC-BY-SA-4.0 Category:Complex quadratic map Category:Gradient fields Category:Images with Maxima CAS source code Category:Scalar fields Category:Scalar potential Category:Self-published work Category:Translation possible - SVG Category:Valid SVG created with Gnuplot code:Charts