File:Multiplier4 f.png

Summary

Description
English: Stability index of periodic z-points for c along horizontal axis for fc(z)= z*z +c
Polski: Indeks stabilności dla parametrów c wzdłuż osi OX dla fc(z) = z*z +c
Date
Source Own work
Author Adam majewski

Summary

This image shows some features of the discrete dynamical system

based on complex quadratic polynomial :

.

When coeeficient goes inside Mandelbrot set from c=0.25 to c=-2 along horizontal axis ( imaginary part of c is zero) then stability index of periodic points is changing. This diagram shows what happens there.

Stability index:

  • is zero for centers of hyperboic components of Mandelbrot set, like c= 0 or c = -1
  • is 1 for root points, like c=0.25, c=-0.75 or c=-1.25

Maxima src code

 load(cpoly); /* for bfallroots */
 /* ################  Definitions ############################ */

 /* use : load(cpoly);  roots:GiveRoots_bf(eq); */
 GiveRoots_bf(g):=
 block(
  [cc:bfallroots(expand(g)=0)],
  cc:map(rhs,cc),/* remove string "c=" */
  return(cc)
  )$ 

 /* functions for computing stability index of fixed points ;  returns real value */ 
 stability_beta(_c):=
 block(
  beta:(1+sqrt(abs(1-4*_c)))/2, 
  stability:abs(float(2*beta)), /* abs(multiplier(z)) */
  return(stability)
 );  

 stability_alfa(_c):=
 block(
  alfa:(1-sqrt(abs(1-4*_c)))/2, 
  stability:abs(float(2*alfa)), /* abs(multiplier(z)) */
  return(stability)
 ); 

 stability_2(c):=
 block(
 [eq,roots,z2],
  eq:z*z +z +c +1,  
  roots:GiveRoots_bf(eq), 
  z2:roots[1],
  m:4*z2*(z2*z2+c), /* multiplier */ 
  stability:cabs(float(m)), /*  abs(multiplier(z2)) */
  return(stability)
 ); 

 stability_3(c):=
 block(
  [eq,roots,z3],
  eq:z^6+z^5+(3*c+1)*z^4+(2*c+1)*z^3+(3*c^2+3*c+1)*z^2+(c^2+2*c+1)*z+c^3+2*c^2+c+1,  
  roots:GiveRoots_bf(eq), 
  z3:roots[1],
  m:8*z3*(z3^2+c)*((z3^2+c)^2+c), /* multiplier */ 
  stability:cabs(float(m)), /*  abs(multiplier(z3)) */
  return(stability)
 ); 

 stability_4(c):=
 block(
  [eq,roots,z4],
  eq:z^12+6*c*z^10+z^9+(15*c^2+3*c)*z^8+4*c*z^7+(20*c^3+12*c^2+1)*z^6+(6*c^2+2*c)*z^5+
  (15*c^4+18*c^3+3*c^2+4*c)*z^4+(4*c^3+4*c^2+1)*z^3+
  (6*c^5+12*c^4+6*c^3+5*c^2+c)*z^2+(c^4+2*c^3+c^2+2*c)*z+c^6+3*c^5+3*c^4+3*c^3+2*c^2+1,  
  roots:GiveRoots_bf(eq), 
  z4:roots[1],
  m:16*z4*(z4^2+c)*((z4^2+c)^2+c)*(((z4^2+c)^2+c)^2+c), /* multiplier */ 
  stability:cabs(float(m)), /*  abs(multiplier(z3)) */
  return(stability)
 ); 

 /* root points */
 root_pts:[-1.401154502237,-1.401151982029,-1.401140214699,-1.4010852713,-1.4008287424,-1.3996312389,
 -1.3940461566,-1.3680989394,-1.25,-0.75];

 ry:[1,1,1,1,1,1,1,1,1,1];

 /* centers of hyperbolic components of F1/2 family ( on real axis) */
 centers:[-1.381547484432061460,-1.31070264133683,-1,0]; /* periods: 8,4,2,1 */

 cy:[0,0,0,0];
 xMax:0.25;
 xMin:-1.39;
 yMin:0;
 yMax:xMax-xMin; /* for square image, but yMax can be > (xMax-xMin) */

 /* ------------------------------- main ------------------------------------------------- */
 load(draw);

 draw2d(
  terminal = png,
  file_name = "multiplier4_f",
  pic_height= 1100,
  pic_width=1100,
  user_preamble="set bmargin 7;set rmargin 25;set key out;set key top right",
  title       = "Stability index of periodic z-points for c along horizontal axis  for fc(z)= z*z +c ",
  ylabel     = "Stability index of z",
  xlabel     = "c",
  yrange = [yMin,yMax],
  /* period 1 */
  key    = "period 1 beta",
  color  = red,
  explicit(stability_beta,x,xMin,xMax),
  key    = "period 1 alfa",
  color  = blue,
  explicit(stability_alfa,x,xMin,xMax),
  /* period 2 */
  key    = "period 2 ",
  color  = green,
  explicit(stability_2,x,xMin,xMax),
  /* period 3 */
  key    = "period 3 ",
  color  = magenta,
  explicit(stability_3,x,xMin,xMax),
  /* period 4 */
  key    = "period 4 ",
  color  = purple,
  explicit(stability_4,x,xMin,xMax),
  /* grid and tics */
  xtics      = {-2,-1.94079980652948,-1.75487766624669,-1.3680989394,-1.31070264133683,-1.25,-1,-3/4,0,0.25}, 
  /* -2,root points,centers, 0 */
  xtics_axis = true,            /* plot tics on x-axis */
  xtics_rotate = true,
  ytics      = {0,1},
  grid       = true, /* draw grid*/
  /* special points */
  point_type    = filled_circle,
  point_size    = 0.5,
  points_joined = false,
  color         = black,
  key           = "root points",
  points(root_pts,ry),
  color         = red,
  key           = "centers",
  points(centers,cy)
 )$

Licensing

I, the copyright holder of this work, hereby publish it under the following licenses:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Category:CC-BY-SA-3.0#Multiplier4%20f.png
GNU head Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.
Category:License migration redundant#Multiplier4%20f.pngCategory:GFDL#Multiplier4%20f.png
You may select the license of your choice.
Category:Self-published work Category:Dynamical systems Category:Gnuplot graphics Category:Images with Maxima CAS source code Category:Real quadratic map
Category:CC-BY-SA-3.0 Category:Dynamical systems Category:GFDL Category:Gnuplot graphics Category:Images with Maxima CAS source code Category:License migration redundant Category:Real quadratic map Category:Self-published work