File:Logarithm inversefunctiontoexp.svg

Summary

Description
English: Logarithm function as the inverse of an exponential, shown on the same graph together with the 45° “mirror line”.
Date
Source Own work
Author Stpasha
Other versions Logarithm_inversefunctiontoexp.png

Source code in Mathematica


t = 3;
g2 = Plot[{Log[2, x], 2^x}, {x, -3, 5}, 
  PlotRange -> {{-2, 4.5}, {-3, 5}}, AspectRatio -> 8/6.5, 
  ImageSize -> 240,
  PlotStyle -> {{Thickness[0.007], Blue}, {Thickness[0.007], 
     Darker[Red]}},
  AxesStyle -> 
   Directive[FontSize -> 12, FontFamily -> "Arial", 
    Thickness[0.003]],
  AxesLabel -> {"x", None},
  Ticks -> {{{Log[2, t], "\!\(\*SubscriptBox[\"log\", \"b\"]\)(\!\(\*
StyleBox[\"t\",\nFontSlant->\"Italic\"]\))"}, {t, "\!\(\*
StyleBox[\"t\",\nFontSlant->\"Italic\"]\)"}}, {{Log[2, t], 
      "\!\(\*SubscriptBox[\"log\", \"b\"]\)(\!\(\*
StyleBox[\"t\",\nFontSlant->\"Italic\"]\))"}, {t, "\!\(\*
StyleBox[\"t\",\nFontSlant->\"Italic\"]\)"}}},
  Epilog -> {
    Line[{{-2.3, -2.3}, {3.5, 3.5}}],
    Line[{{t, Log[2, t]}, {Log[2, t], t}}],
    Dotted, Gray,
    Line[{{Log[2, t], 0}, {Log[2, t], 5}}],
    Line[{{t, 0}, {t, Log[2, t]}}],
    Line[{{0, Log[2, t]}, {4, Log[2, t]}}],
    Line[{{0, t}, {Log[2, t], t}}],
    Black, PointSize[Medium],
    Point[{{t, Log[2, t]}, {Log[2, t], t}}],
    FontSize -> 12, FontFamily -> "Arial",
    Inset["\!\(\*SuperscriptBox[\"b\", \"x\"]\)", {2.5, 4.2}],
    Inset[
     "\!\(\*SubscriptBox[\"log\", \"b\"]\)\!\(\*AdjustmentBox[\"(\",\n\
BoxMargins->{{-0.12355212355212356`, 0.12355212355212356`}, {0., \
0.}}]\)\!\(\*AdjustmentBox[\"x\",\n\
BoxMargins->{{-0.12355212355212356`, 0.12355212355212356`}, {0., \
0.}}]\)\!\(\*AdjustmentBox[\")\",\n\
BoxMargins->{{-0.12355212355212356`, 0.12355212355212356`}, {0., \
0.}}]\)", {3.7, 2.3}]
    }]
Export["Logarithm_inversefunctiontoexp.svg", g2]

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
Creative Commons CC-Zero This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication.
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.

Category:CC-Zero#Logarithm%20inversefunctiontoexp.svg
Category:Self-published work Category:Logarithm
Category:CC-Zero Category:Logarithm Category:Self-published work