File:Integration simpson.svg

Summary

Description
English: Numerical integration by the Simpson's Method. The function being used is . The interval is split in 15 pieces.
Español: Integración numérica por el método de Simpson. La función a integrar es . El intervalo está partido en 15 sub-intervalos.
Date
Source Own work
Author Nicoguaro
SVG development
InfoField
Source code
InfoField

Python code

from __future__ import division
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import interp1d


# Interpolation data
x = np.linspace(-2, 2, 15)
y = x**2 + np.sin(2*np.pi*x)
f = interp1d(x, y, kind='quadratic')

# Fine data
x = np.linspace(-2, 2, 200)
y = x**2 + np.sin(2*np.pi*x)

# Plots
fig = plt.figure(figsize=(4.5, 1))
ax = plt.subplot(1, 1, 1)
plt.plot(x, y, lw=2, zorder=6)
plt.plot(x, f(x), '--r', lw=2, zorder=7)
plt.ylim(-1.5, 4.75)
plt.xticks([-2, -1, 0, 1, 2])
plt.yticks([0, 2, 4])
plt.grid(b=True, lw=2, color='gray', linestyle='solid', alpha=0.5,
         zorder=3)
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
plt.savefig('Integration_simpson.svg', bbox_inches='tight')
plt.show()

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution
This file is licensed under the Creative Commons Attribution 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
Category:CC-BY-4.0#Integration%20simpson.svg
Category:Self-published work Category:Numerical analysis Category:Integration (mathematics)
Category:CC-BY-4.0 Category:Integration (mathematics) Category:Numerical analysis Category:Self-published work Category:Valid SVG created with Matplotlib code