File:Gaussianprocess SensorCalibrationCurvesMean.svg
Summary
Description |
Deutsch: Mean and standard deviation of sample set |
Date | |
Source | Own work |
Author | Physikinger |
SVG development | |
Source code | Python code#This source code is public domain
#Author: Christian Schirm
import numpy, scipy.spatial
import matplotlib.pyplot as plt
numpy.random.seed(1)
def covMat(x1, x2, covFunc, noise=0): # Covariance matrix
cov = covFunc(scipy.spatial.distance_matrix(numpy.atleast_2d(x1).T, numpy.atleast_2d(x2).T))
if noise: cov += numpy.diag(numpy.ones(len(cov))*noise)
return cov
N=15
x = numpy.linspace(0, 10, 100)
y = [4*x**.7*(0.3+0.4*numpy.random.rand()) + (numpy.random.rand()-0.5)*2.8*numpy.sin(0.3*x*(1+0.05*numpy.random.rand())) for i in range(N)]
fig = plt.figure(figsize=(4.*0.85,3*0.85),dpi=100)
for i,iy in enumerate(y): plt.plot(x,iy,color=plt.cm.tab10(i*1./N))
plt.xlabel(u'Physical Value x')
plt.ylabel('Sensor Signal')
plt.axis([0,10,0,12])
plt.tight_layout()
plt.savefig('Gaussianprocess_SensorCalibrationCurves.svg')
A = numpy.array(y)
m = numpy.mean(A,axis=0)
cov = (A-m).T.dot((A-m))/(len(A)-1)
sigma = numpy.sqrt(cov.diagonal())
fig = plt.figure(figsize=(4.*0.85,3*0.85),dpi=100)
plt.fill_between(x, m - sigma, m + sigma, color = '0.85')
plt.plot(x,m,'-')
plt.xlabel(u'Physical Value x')
plt.ylabel('Sensor Signal')
plt.axis([0,10,0,12])
plt.tight_layout()
plt.savefig('Gaussianprocess_SensorCalibrationCurvesMean.svg')
iTest = numpy.array([45, 95])
yTest = m[iTest] + [+0.5,+2]
mask = numpy.zeros(len(cov),'bool')
mask[iTest[-1:]] = True
Ckk = cov[mask][:,mask]
Cuu = cov
numpy.fill_diagonal(Cuu,numpy.diag(Cuu)+0.000001)
CkkInv = numpy.linalg.inv(Ckk)
Cuk = cov[:,mask]
yPred = m + numpy.dot(numpy.dot(Cuk,CkkInv), yTest[-1:] - m[mask])
sigma = numpy.sqrt(numpy.maximum(0,numpy.diag(Cuu - numpy.dot(numpy.dot(Cuk,CkkInv),Cuk.T))))
fig = plt.figure(figsize=(4.*0.85,3*0.85),dpi=100)
plt.fill_between(x, yPred - sigma, yPred + sigma, color = '0.85')
plt.plot(x,yPred,'-')
plt.plot(x[mask],yTest[-1:],'ko')
plt.xlabel(u'Physical Value x')
plt.ylabel('Sensor Signal')
plt.axis([0,10,0,12])
plt.tight_layout()
plt.savefig('Gaussianprocess_SensorCalibration1Point.svg')
mask = numpy.zeros(len(cov),'bool')
mask[iTest] = True
Ckk = cov[mask][:,mask]
Cuu = cov
numpy.fill_diagonal(Cuu,numpy.diag(Cuu)+0.000001)
CkkInv = numpy.linalg.inv(Ckk)
Cuk = cov[:][:,mask]
yPred = m + numpy.dot(numpy.dot(Cuk,CkkInv), yTest - m[mask])
sigma = numpy.sqrt(numpy.maximum(0,numpy.diag(Cuu - numpy.dot(numpy.dot(Cuk,CkkInv),Cuk.T))))
fig = plt.figure(figsize=(4.*0.85,3*0.85),dpi=100)
plt.fill_between(x, yPred - sigma, yPred + sigma, color = '0.85')
plt.plot(x,yPred,'-')
plt.plot(x[mask],yTest,'ko')
plt.xlabel(u'Physical Value x')
plt.ylabel('Sensor Signal')
plt.axis([0,10,0,12])
plt.tight_layout()
plt.savefig('Gaussianprocess_SensorCalibration2Point.svg')
|
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
![]() ![]() |
This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication. |
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
|
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
![]() ![]() |
This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication. |
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
|