File:Anscombe transform animated.gif

Summary

Description
English: ```python

import numpy as np import matplotlib.pyplot as plt import scipy

import tempfile import os import imageio

def anscombe_transform(samples, m):

   return 2 * np.sqrt(samples + 3/8) - (2*np.sqrt(m+3/8) - 1/(4*np.sqrt(m)))

def plot_anscombe(m=10, n_samples=1000000):

   fig, axes = plt.subplot_mosaic("A", figsize=(8, 4))
   ax1 = axes["A"]
   samples = anscombe_transform(np.random.poisson(m, n_samples), m)
   mean_diff = np.mean(samples)
   bins = sorted(list(set(samples)))
   # Plot the histogram of the samples
   ax1.hist(samples, bins=bins, align='right', rwidth=2, density=True)
   xs = np.linspace(-3.5, 3.5, 1000)
   ax1.plot(xs, scipy.stats.norm.pdf(xs))
   ax1.vlines([mean_diff], 0,0.4, color='k')
   # Set the x-axis label and title
   ax1.set_xlabel('Number of Events')
   ax1.set_xlim(-4,+4)
   ax1.set_ylim(0, 0.44)
   ax1.set_title('Anscombe transform of Poisson(m)')
   
   text_lines = [r'$m =$' + f'{m}',
                 r'$m^{3/2}\mu =$' + f'{m**1.5 * mean_diff:.2f}, ', 
                 r'$m^{2}(\sigma-1) =$' + f'{m**2 * (np.std(samples)-1):.2f}',]
   text_x = 0.03
   text_y = 0.9
   text_color = 'black'
   text_size = 12
   for i, line in enumerate(text_lines):
       ax1.text(text_x, text_y-(i*0.08), line, 
                color=text_color, fontsize=text_size, 
                ha='left', va='bottom', transform=ax1.transAxes)
   fig.tight_layout()
   return fig

def interpolate_counts(counts, frames_per_step):

   interpolated_counts = [counts[0]]
   for i in range(1,len(counts)):
       interval = (counts[i] - counts[i-1]) // i
       interpolated_counts += list(range(counts[i-1], counts[i], interval))
   return interpolated_counts + [counts[-1]]

with tempfile.TemporaryDirectory() as temp_dir:

   n_steps = 10
   frames_per_step = 10
   ms = interpolate_counts([2**n for n in range(n_steps)], frames_per_step)
   n_frames = len(ms)-1
   
   for i in range(n_frames):
       fig = plot_anscombe(m=ms[i], n_samples=10000000)
       filename = os.path.join(temp_dir, f"plot_{i:03d}.png")
       fig.savefig(filename)
       plt.close(fig)
   # Compile images into GIF
   fps = 12
   images = []
   for i in range(n_frames):
       filename = os.path.join(temp_dir, f"plot_{i:03d}.png")
       images.append(imageio.imread(filename))
   imageio.mimsave(f"Anscombe transform.gif", images, duration=1/fps)
```
Date
Source Own work
Author Cosmia Nebula

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Category:CC-BY-SA-4.0#Anscombe%20transform%20animated.gif
Category:Self-published work Category:Statistics Category:Normal distribution Category:Approximation Category:Animated GIF files Category:Created with Matplotlib
Category:Animated GIF files Category:Approximation Category:CC-BY-SA-4.0 Category:Created with Matplotlib Category:Normal distribution Category:Self-published work Category:Statistics