File:Kalman Polynom Test.svg

Summary

Description
Deutsch: Der Kalman-Filter wird auf ein Polynom 3. Grades angewendet und versucht aus den verrauschten Daten die Polynomparameter zu schätzen. Im Laufe der Iterationen nährt sich die Schätzung immer mehr an den unverrauschten Verlauf an.
Date
Source Own work
Author Physikinger
SVG development
InfoField
Source code
InfoField

Python code

# This source code is public domain
# Autor: Christian Schirm

import numpy
import matplotlib.pyplot as plt

# Generate polynomial
nSteps = 301
coeff = [-50, 70, -16, 1]
sigmaNoise = 50
sigmaPrior = 100
xMax = 10

ts = numpy.linspace(0,xMax,nSteps)
deltaT = ts[1] - ts[0]
nPoly = len(coeff)
A = numpy.array([ts**i for i in range(nPoly)])
y_polynomial = coeff @ A

# Noise
numpy.random.seed(1)
noise = sigmaNoise*numpy.random.randn(nSteps)

# Add noise to the signal
y = y_polynomial + noise

# Prepare Kalman estimation
D = numpy.zeros((nPoly,nPoly))
D[(numpy.arange(nPoly-1), numpy.arange(nPoly-1)+1)] = 1
Dt = D*deltaT
F = numpy.identity(nPoly) + Dt + Dt @ Dt/2 + Dt @ Dt @ Dt/6
H = numpy.zeros((1,nPoly))
H[0,0] = 1

# Initialize Kalman estimation
x = numpy.zeros(nPoly)
components = A / nSteps
# P = sigmaPrior**2 * numpy.identity(nPoly)
P = sigmaPrior**2 * numpy.linalg.inv(components @ components.T)  # Constant variance prior model

# Start Kalman iteration
yEst = []
ySigma = []
for i in range(len(y)):
    # Propagate
    if i > 0:
        x = F @ x
        P = F @ P @ F.T

    # Estimate
    K = P @ H.T @ numpy.linalg.inv(H @ P @ H.T + sigmaNoise**2)
    x = x + K @ (y[i] - H @ x)
    P = (numpy.identity(nPoly) - K @ H) @ P
    ySigma.append(P[0,0])
    yEst.append(x[0])

ySigma = numpy.sqrt(ySigma)

# Plot
plt.figure(figsize=(5,3.5))
plt.plot(ts,y_polynomial,'C3-', label='Polynom 3. Grades', zorder=1)
plt.plot(ts,y,'.-', color='C1', markersize=4, linewidth=0.4, alpha=0.6, label='Polynom + Rauschen', zorder=2)
plt.plot(ts,yEst,'C0-',  label='Kalman-Schätzung', zorder=3)
plt.fill_between(ts,y_polynomial-ySigma, y_polynomial+ySigma, color='0.2', alpha=0.17,
        label='Fehlerschätzung\n(relativ zu wahrer Kurve)', lw=0, zorder=0)
plt.xlabel('Zeit')
plt.legend(loc=4)
plt.tight_layout()
plt.savefig('Kalman_Polynom_Test.svg')
plt.savefig('Kalman_Polynom_Test.png')
# plt.show()

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
Creative Commons CC-Zero This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication.
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.

Category:CC-Zero#Kalman%20Polynom%20Test.svgCategory:Self-published work
Category:Kalman filters
Category:CC-Zero Category:Kalman filters Category:Self-published work Category:Valid SVG created with Matplotlib code