File:Peano Curve Steinhaus 2.svg
Summary
Description |
English: Peano Curve Steinhaus (Level 2) |
Date | |
Source | Own work |
Author | Gjacquenot |
SVG development | |
Source code | Python code# -*- coding: utf-8 -*-
#
# A fractal Peano curve, showing how a line
# (dimension 1) can literally fill the plane (dimension 2),
# illustrating how streams can fill a surface.
#
# http://mathworld.wolfram.com/SierpinskiCurve.html
# http://www.physics.mcgill.ca/~gang/multifrac/intro/intro.htm
#
# Guillaume Jacquenot
# 2015-05-25
# CC-BY-SA
import numpy as np
import matplotlib
from matplotlib.pyplot import figure, show, rc, grid
import random
def symmetrize(a = +1.0, b = -1.0, c = 0.0, X = [], Y = []):
# Create symmetric points over a line, that is described
# with the following equation
# ax + by + c = 0
den = 1.0/(a**2+b**2)
Xs = []
Ys = []
for x,y in zip(X,Y):
xl = den*(b**2*x-a*b*y-a*c)
yl = den*(-a*b*x+a**2*y-b*c)
Xs.append(2*xl-x)
Ys.append(2*yl-y)
return Xs,Ys
def generateSymmetries(DX, DY):
# Create symmetric pattern
DX[2] = np.flipud(-DX[1])
DY[2] = np.flipud(DY[1])
DX[3] = np.flipud(DX[1])
DY[3] = np.flipud(-DY[1])
DX[4] = np.flipud(-DX[1])
DY[4] = np.flipud(-DY[1])
def getOffset(key):
offsetX, offsetY = 0.0,0.0
for i,k in enumerate(key):
scale = 1.0/2**(i+1)
k = int(k)
if k%2==1:
offsetX += -scale
else:
offsetX += +scale
if k<3:
offsetY += +scale
else:
offsetY += -scale
return offsetX, offsetY
class Pattern(object):
def __init__(self, rootPattern_X = [-0.5,-0.5,-0.75], rootPattern_Y = [+0.0,+0.25,+0.5]):
self.level = 0
Xs,Ys = symmetrize(a = -1.0, b = -1.0, c = 0.0, X = rootPattern_X, Y = rootPattern_Y)
self.pattern_X = {1:np.append(rootPattern_X, np.flipud(Xs))}
self.pattern_Y = {1:np.append(rootPattern_Y, np.flipud(Ys))}
generateSymmetries(self.pattern_X,self.pattern_Y)
Xs,Ys = symmetrize(a = +1.0, b = -1.0, c = 1.0, X = rootPattern_X[0:-1], Y = rootPattern_Y[0:-1])
self.patternS_X = {1:np.append(rootPattern_X[0:-1], np.flipud(Xs))}
self.patternS_Y = {1:np.append(rootPattern_Y[0:-1], np.flipud(Ys))}
generateSymmetries(self.patternS_X,self.patternS_Y)
patternE_X,patternE_Y = symmetrize(a = +1.0, b = +1.0, c = 0.0, X = self.patternS_X[1], Y = self.patternS_Y[1])
self.patternE_X = {1:np.array(patternE_X)}
self.patternE_Y = {1:np.array(patternE_Y)}
generateSymmetries(self.patternE_X, self.patternE_Y)
class Steinhaus(object):
def __init__(self, level = 6, rootPattern_X = [-0.5,-0.5,-0.75], rootPattern_Y = [+0.0,+0.25,+0.5]):
self.level = level
self.pattern = Pattern(rootPattern_X, rootPattern_Y)
self.lines = {1:{str(k):self.get(k) for k in range(1,5)}}
for n in range(2,self.level+1):
self.generateLevel(n)
def generateLevel(self, level = 2):
self.lines[level] = {}
for key,lines in self.lines[level-1].iteritems():
self.lines[level].update({key+str(k):self.getFromKey(key+str(k), len(lines[0])) for k in range(1,5)})
def get(self, id, idParent = 0, level = 1, offset = (0.0, 0.0), nParent = 1):
scale = 1.0/2**(level-1)
if (id == (5-idParent)) or (nParent==2 and idParent==id):
return [[scale*self.pattern.patternS_X[id]+offset[0], scale*self.pattern.patternE_X[id]+offset[0]],\
[scale*self.pattern.patternS_Y[id]+offset[1], scale*self.pattern.patternE_Y[id]+offset[1]]]
else:
return [scale*self.pattern.pattern_X[id]+offset[0]], [scale*self.pattern.pattern_Y[id]+offset[1]]
def getFromKey(self, key, nParent = 1):
return self.get(id = int(key[-1]), idParent = int(key[-2]), level = len(key), offset = getOffset(key[:-1]), nParent = nParent)
def makePlot(self, outputFilename = r'Steinhaus.svg', level = 1, plotGrid = False, randomColor = False):
rc('grid', linewidth = 1, linestyle = '-', color = '#a0a0a0')
fig = figure()
ax = fig.add_axes([0.12, 0.12, 0.76, 0.76])
grid(plotGrid)
for lines in self.lines[level].itervalues():
for lineX,lineY in zip(lines[0],lines[1]):
if randomColor:
color = [random.random() for _ in range(3)]
else:
color = 'k'
ax.plot(lineX, lineY, lw = 1, ls = '-', color = color)
xlimMin, xlimMax = (-1.0, +1.0)
ylimMin, ylimMax = (-1.0, +1.0)
ax.set_xlim((xlimMin, xlimMax))
ax.set_ylim((ylimMin, ylimMax))
ax.set_aspect('equal')
ax.set_xticks([])
ax.set_yticks([])
fig.savefig(outputFilename)
fig.show()
if __name__ == '__main__':
s = Steinhaus()
for i in range(1,s.level+1):
s.makePlot(outputFilename = r'Steinhaus_{0}.svg'.format(i), level = i, randomColor = False)
s.makePlot(outputFilename = r'Steinhaus_{0}.png'.format(i), level = i, randomColor = False)
|
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.