File:Integer examples for groups and non-groups.pdf
Summary
Description |
English: Shows a Karnaugh diagram of all possibilities of the Commutative, Associative, Inverse, and Identity law to hold (y) or not to hold (n), and the definition of an according binary operation ⊕ on the integers (ℤ) for almost each possibility. The rightmost column is omitted since Inverse elements can't be defined in absence of an Identity element. Where applicable, the Identity element always happens to be 0, and the Inverse element of x always happens to be -x. |
Date | |
Source | Own work |
Author | Jochen Burghardt |
Other versions | File:Integer examples for groups and non-groups svg.svg |
LaTeX source Code |
---|
\documentclass[12pt]{article}
\usepackage[pdftex]{color}
\usepackage[paperwidth=250mm,paperheight=230mm]{geometry}
\setlength{\unitlength}{1mm}
\setlength{\topmargin}{-45mm}
\setlength{\textwidth}{250mm}
\setlength{\textheight}{230mm}
\setlength{\oddsidemargin}{-25mm}
\pagestyle{empty}
\begin{document}
% foregrounds
\definecolor{fLin} {rgb}{0.50,0.50,0.50} % line
\definecolor{fALn} {rgb}{0.80,0.80,0.80} % auxiliary line
\definecolor{fCap} {rgb}{0.30,0.30,0.30} % karnaugh caption
\definecolor{fACp} {rgb}{0.80,0.80,0.80} % auxiliary karnaugh caption
\definecolor{fExm} {rgb}{0.00,0.00,0.00} % examples
\definecolor{fMag} {rgb}{0.00,0.00,0.50} % magma
\definecolor{fSGp} {rgb}{0.00,0.50,0.00} % monoid
\definecolor{fMon} {rgb}{0.50,0.00,0.00} % semigroup
\definecolor{fGrp} {rgb}{0.50,0.50,0.00} % group
\definecolor{fAGp} {rgb}{0.00,0.50,0.50} % abelian group
% backgrounds
\definecolor{bMag} {rgb}{0.90,0.90,0.99} % magma
\definecolor{bSGp} {rgb}{0.90,0.99,0.90} % monoid
\definecolor{bMon} {rgb}{0.99,0.90,0.90} % semigroup
\definecolor{bGrp} {rgb}{0.99,0.99,0.80} % group
\definecolor{bAGp} {rgb}{0.80,0.99,0.99} % abelian group
\begin{picture}(240,230)
\thicklines
% magma
\textcolor{bMag}{\put(37,2){\makebox(0,0)[bl]{\rule{146mm}{196mm}}}}%
\textcolor{fMag}{\put(37,2){\framebox(146,196)[bl]{}}}%
\textcolor{fMag}{\put(39,196){\makebox(0,0)[tl]{\large\bf Magma}}}%
% semigroup
\textcolor{bSGp}{\put(39,52){\makebox(0,0)[bl]{\rule{142mm}{96mm}}}}%
\textcolor{fSGp}{\put(39,52){\framebox(142,96)[bl]{}}}%
\textcolor{fSGp}{\put(41,146){\makebox(0,0)[tl]{\large\bf Semigroup}}}%
% monoid
\textcolor{bMon}{\put(87,54){\makebox(0,0)[bl]{\rule{92mm}{92mm}}}}%
\textcolor{fMon}{\put(87,54){\framebox(92,92)[bl]{}}}%
\textcolor{fMon}{\put(89,144){\makebox(0,0)[tl]{\large\bf Monoid}}}%
% group
\textcolor{bGrp}{\put(137,56){\makebox(0,0)[bl]{\rule{40mm}{88mm}}}}%
\textcolor{fGrp}{\put(137,56){\framebox(40,88)[bl]{}}}%
\textcolor{fGrp}{\put(139,142){\makebox(0,0)[tl]{\large\bf Group}}}%
% abelian group
\textcolor{bAGp}{\put(139,58){\makebox(0,0)[bl]{\rule{36mm}{40mm}}}}%
\textcolor{fAGp}{\put(139,58){\framebox(36,40)[bl]{}}}%
\textcolor{fAGp}{\put(141,96){\makebox(0,0)[tl]{\large\bf Abel.\ Group}}}%
\thinlines
% diagram hor lines
\textcolor{fLin}{\put(35,0){\line(1,0){150}}}%
\textcolor{fLin}{\put(35,50){\line(1,0){150}}}%
\textcolor{fLin}{\put(35,100){\line(1,0){150}}}%
\textcolor{fLin}{\put(35,150){\line(1,0){150}}}%
\textcolor{fLin}{\put(35,200){\line(1,0){150}}}%
\textcolor{fALn}{\put(185,0){\line(1,0){50}}}%
\textcolor{fALn}{\put(185,50){\line(1,0){50}}}%
\textcolor{fALn}{\put(185,100){\line(1,0){50}}}%
\textcolor{fALn}{\put(185,150){\line(1,0){50}}}%
\textcolor{fALn}{\put(185,200){\line(1,0){50}}}%
% diagram vert lines
\textcolor{fLin}{\put(35,0){\line(0,1){200}}}%
\textcolor{fLin}{\put(85,0){\line(0,1){200}}}%
\textcolor{fLin}{\put(135,0){\line(0,1){200}}}%
\textcolor{fLin}{\put(185,0){\line(0,1){200}}}%
\textcolor{fALn}{\put(235,0){\line(0,1){200}}}%
% diagram hor caption
\textcolor{fCap}{\put(39,220){\makebox(0,0)[l]{\large\bf Inv,Ide}}}%
\textcolor{fCap}{\put(60,210){\makebox(0,0){\large\bf nn}}}%
\textcolor{fCap}{\put(110,210){\makebox(0,0){\large\bf ny}}}%
\textcolor{fCap}{\put(160,210){\makebox(0,0){\large\bf yy}}}%
\textcolor{fACp}{\put(210,210){\makebox(0,0){\large\bf yn}}}%
% diagram vert caption
\textcolor{fCap}{\put(25,196){\makebox(0,0)[tr]{\large\bf Com,Ass}}}%
\textcolor{fCap}{\put(25,175){\makebox(0,0)[r]{\large\bf nn}}}%
\textcolor{fCap}{\put(25,125){\makebox(0,0)[r]{\large\bf ny}}}%
\textcolor{fCap}{\put(25,75){\makebox(0,0)[r]{\large\bf yy}}}%
\textcolor{fCap}{\put(25,25){\makebox(0,0)[r]{\large\bf yn}}}%
% example nnnn
\textcolor{fExm}{\put(60,175){\makebox(0,0){%
$\begin{array}{r@{}c@{}l}%
x \oplus y & = & 2 x - y \\%
\end{array}$%
}}}%
% example nnny
\textcolor{fExm}{\put(110,175){\makebox(0,0){%
$\begin{array}{r@{}c@{}l}%
x \oplus y & = & x + y + x^2 y \\%
\end{array}$%
}}}%
% example nnyy
\textcolor{fExm}{\put(160,175){\makebox(0,0){%
$\begin{array}{r@{}c@{}l}%
x \oplus y & = & x \!+\! y \!+\! x^2 y^2 \!+\! x y^3 \\%
\end{array}$%
}}}%
% example nynn
\textcolor{fExm}{\put(60,125){\makebox(0,0){%
$\begin{array}{r@{}c@{}l}%
x \oplus y & = & x \\%
\end{array}$%
}}}%
% example yynn
\textcolor{fExm}{\put(60,75){\makebox(0,0){%
$\begin{array}{r@{}c@{}l}%
x \oplus y & = & 2 x y \\%
\end{array}$%
}}}%
% example yyny
\textcolor{fExm}{\put(110,75){\makebox(0,0){%
$\begin{array}{r@{}c@{}l}%
x \oplus y & = & x + y + x y \\%
\end{array}$%
}}}%
% example yyyy
\textcolor{fExm}{\put(158,75){\makebox(0,0){%
$\begin{array}{r@{}c@{}l}%
x \oplus y & = & x + y \\%
\end{array}$%
}}}%
% example ynnn
\textcolor{fExm}{\put(60,25){\makebox(0,0){%
$\begin{array}{r@{}c@{}l}%
x \oplus y & = & x y - 1 \\%
\end{array}$%
}}}%
% example ynny
\textcolor{fExm}{\put(110,25){\makebox(0,0){%
$\begin{array}{r@{}c@{}l}%
x \oplus y & = & x + y + x^2 y^2 \\%
\end{array}$%
}}}%
% example ynyy
\textcolor{fExm}{\put(160,25){\makebox(0,0){%
$\begin{array}{r@{}c@{}l}%
x \oplus y & = & x \!+\! y \!+\! x^2 y \!+\! x y^2 \\%
\end{array}$%
}}}%
\end{picture}
\end{document}
|
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.