File:MDKQ anim ohne Ausreiser3.svg

Summary

Description
Deutsch: Teilbild einer Animation Polynomapproximation unterschiedlicher Polynomordnung
Date
Source MDKQ anim ohne Ausreiser.gif
Author Johannes Kalliauer
Other versions File:MDKQ anim ohne Ausreiser.gif
Category:Graphic Lab-de#%20MDKQ%20anim%20ohne%20Ausreiser3.svg

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
Creative Commons CC-Zero This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication.
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.

Category:CC-Zero#MDKQ%20anim%20ohne%20Ausreiser3.svg
Category:Self-published work

Quellen: Skript zur Bildgenerierung

Erzeugungsskript, um die Grafik zu erstellen.

Anleitung

Benötigte Open-Source-Software:

Nach der Installation von Python den Quelltext in eine Datei mdkq.py kopieren und starten durch Doppelklicken oder in der Konsole durch Eingabe von

python mdkq.py

Python-Skript

 
This plot was created with Matplotlib by v.
Category:Valid SVG created with Matplotlib#MDKQ%20anim%20ohne%20Ausreiser3.svg
#This source code is public domain
#Created by Christian Schirm
#Edited by Johannes Kalliauer
import numpy, pylab
from matplotlib.font_manager import FontProperties
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
from numpy.random import randn

x=[1,2,3,4,5,7]
y=[2.0,2.5,2.5,3.4,3.7,3]

for N in range(1,8):
   A=numpy.zeros((N,N))
   for i in range(N):
       for j in range(N):
           A[i,j]=sum(xi**(i+j) for xi in x)
   b=numpy.zeros((N))
   for i in range(N):
       b[i]=sum(xi**(i)*yi for xi,yi in zip(x,y))
   c=numpy.linalg.solve(A, b)
   xr=numpy.asarray(x)
   yr=numpy.sum([c[i]*xr**i for i in range(len(c))],axis=0)
   residuen=[]
   for i in range(len(x)): residuen+=[[xr[i],xr[i]],[y[i],yr[i]],'g-']
   xneu=numpy.linspace(0, 8, num=100)
   yneu=numpy.sum([c[i]*xneu**i for i in range(len(c))],axis=0)
   plt.clf()
   fig = plt.figure(figsize=(4.5, 3.5))
   fig.subplotpars.bottom=0.13
   y0=plt.plot(*residuen[:-3])
   plt.setp(y0, color='#80d080', linewidth=1.5)
   #y0=plt.plot(*residuen[-3:], label="Residuen")
   y0,=plt.plot(*residuen[-3:])
   plt.setp(y0, color='#80d080', linewidth=1.5)
   #y2=plt.plot(xneu,yneu,'r-', label="Modellfunktion")
   y2,=plt.plot(xneu,yneu,'r-')
   #y1=plt.plot(x,y,'o', label="Messpunkte")
   y1,=plt.plot(x,y,'o')
   plt.xlabel('x')
   plt.ylabel('y')
   font = FontProperties()
   font.set_size('medium')
   leg = plt.legend([y1,y2,y0],['Messpunkte','Modellfunktion','Residuen'],frameon=True,loc='lower right',labelspacing=0.3,prop=font)
   #leg = plt.legend(frameon=True,loc='lower right',labelspacing=0.3,prop=font)
   plt.grid(True)
   plt.axis([0, 8, 0, 8])
   plt.text(1,7, "Polynomgrad "+str(N-1),bbox=dict(boxstyle="square,pad=0.5",color='white',ec='black',fill=True))
   #plt.show()
   plt.savefig('MDKQ_anim%i.png'%N)
   plt.savefig('test.eps', format='eps', dpi=900)
   plt.savefig("MDKQ_anim%i.svg"%N)
Category:Regression analysis Category:Numerical analysis Category:NumPy Category:Uploaded by JoKalliauer Category:German-language diagrams
Category:CC-Zero Category:German-language diagrams Category:Graphic Lab-de Category:NumPy Category:Numerical analysis Category:Pages using deprecated source tags Category:Regression analysis Category:Self-published work Category:Uploaded by JoKalliauer Category:Valid SVG created with Matplotlib