File:PoincareMap Lorenz Runge Lcycle.svg
Summary
Description |
English: Periodic orbit and Poincaré map. the periodic orbit is stable limit cycle which is generated by Lorenz equation
|
Date | |
Source | Own work |
Author | Yapparina |
Python source | import numpy as np
import matplotlib.pyplot as plt
n = 100000
h = 0.0001
T = h*n
t = np.arange(0,T,h)
PX =[]
PY =[]
PZ =[]
sigma = 10
b = 8/3
r = 220
def dxdt(x,y,z):
return -sigma * x + sigma * y
def dydt(x,y,z):
return r * x - y -x * z
def dzdt(x,y,z):
return -b * z + x * y
Xst = (b*(r-1))**0.5
Yst = (b*(r-1))**0.5
Zst = r - 1
x = np.empty(n)
y = np.empty(n)
z = np.empty(n)
x[0] = 22
y[0] = 70
z[0] = 180
for i in range(n-1):
k_1 = dxdt(x[i] , y[i] , z[i])
j_1 = dydt(x[i] , y[i] , z[i])
m_1 = dzdt(x[i] , y[i] , z[i])
k_2 = dxdt(x[i] + k_1 * h / 2 , y[i] + j_1 * h / 2, z[i] + m_1 * h / 2)
j_2 = dydt(x[i] + k_1 * h / 2 , y[i] + j_1 * h / 2, z[i] + m_1 * h / 2)
m_2 = dzdt(x[i] + k_1 * h / 2 , y[i] + j_1 * h / 2, z[i] + m_1 * h / 2)
k_3 = dxdt(x[i] + k_2 *h / 2 , y[i] + j_2 * h / 2 , z[i] + m_2 * h / 2)
j_3 = dydt(x[i] + k_2 *h / 2 , y[i] + j_2 * h / 2 , z[i] + m_2 * h / 2)
m_3 = dzdt(x[i] + k_2 *h / 2 , y[i] + j_2 * h / 2 , z[i] + m_2 * h / 2)
k_4 = dxdt(x[i] + k_3 *h , y[i] + j_3 * h , z[i] + m_3 * h)
j_4 = dydt(x[i] + k_3 *h , y[i] + j_3 * h , z[i] + m_3 * h)
m_4 = dzdt(x[i] + k_3 *h , y[i] + j_3 * h , z[i] + m_3 * h)
x[i+1] = x[i] + h/6 * (k_1 + 2*k_2 + 2*k_3 + k_4 )
y[i+1] = y[i] + h/6 * (j_1 + 2*j_2 + 2*j_3 + j_4 )
z[i+1] = z[i] + h/6 * (m_1 + 2*m_2 + 2*m_3 + m_4 )
if (x[i+1] - Xst) > 0 and (x[i] - Xst) < 0:
PX.append(Xst)
PY.append(y[i])
PZ.append(z[i])
astime = int(n/2)
asx= x[astime:]
asy= y[astime:]
asz= z[astime:]
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
ax.plot(asx, asy, asz, color='lime', linewidth=0.5)
ax.scatter(PX, PY, PZ, marker=".", color='black')
plt.show()
|
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
![]() ![]() |
This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication. |
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
|