File:Distance between point of critical orbit and alfa fixed point in parabolic cases.png

Summary

Description
English: Distance between point of critical orbit and alfa fixed point in parabolic cases
Date
Source Own work
Author Adam majewski


Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Category:CC-BY-SA-3.0#Distance%20between%20point%20of%20critical%20orbit%20and%20alfa%20fixed%20point%20in%20parabolic%20cases.png
Category:Self-published work


Maxima CAS src code


kill(all);



/* ---------- functions ---------------------- */

/* http://en.wikipedia.org/wiki/Complex_quadratic_polynomial  */
f(z,c):=rectform(z*z+c);

fn(p, z, c) :=
  if p=0 then z
  elseif p=1 then f(z,c)
  else f(fn(p-1, z, c),c);


/* find fixed point alfa of function f(z,c)   */
GiveFixed(c):= float(rectform((1-sqrt(1-4*c))/2))$

/* gives distance between 2 complex points on plane */
GivePlaneDistance(z1,z2):=float(abs(z2-z1))$



/* conformal map  from circle to cardioid ( boundary
 of period 1 component of Mandelbrot set */
F(w):=w/2-w*w/4;


/* 
circle D={w:abs(w)=1 } where w=l(t,r) 
t is angle in turns ; 1 turn = 360 degree = 2*Pi radians 
r is a radius 
*/
ToCircle(t,r):=r*%e^(%i*t*2*%pi);


/* point on boundary of period 1 component of Mandelbrot set */
GiveC(t,r):=
block(
[w],
w:ToCircle(t,r),
return(float(rectform(F(w))))
)$




 GiveDrawList(Denominator, iMax):=  block
([temp],
 /* temp:[],
  */
   temp:GiveList(Denominator, iMax),
  
  return(temp)
 
);

GiveList(Denominator, iMax):=
 block
 (
  [zprev,znext, c, zAlfa, dist,d_list],
  c: GiveC(1/Denominator,1),
  zAlfa:GiveFixed(c),
  zprev:0.0,
   znext:fn(Denominator,zprev,c),
   dist:GivePlaneDistance(zAlfa,znext),
   d_list:[[1,dist]],
   zprev : znext,
   for i:2 step 1 thru iMax 
    do
    ( 
      znext:fn(Denominator, zprev,c),
      dist:GivePlaneDistance(zAlfa,znext),
      d_list:endcons([i,dist],d_list),
      zprev : znext
    ),
   return(d_list)
)$








compile(all)$


/* ---------- constant ---------------------------*/

DenominatorMax:10$
iMax:5000$


/* -------------  main -----------------------*/


DenominatorsList : makelist(i,i,1,DenominatorMax)$
ColorList:[red,blue,green, black, yellow , purple , red,brown, cyan, violet ]$

DrawLists:[]$ /* empty list */

for Denominator in DenominatorsList do 
(
 disp(Denominator),
 DrawList:GiveDrawList(Denominator, iMax),
 DrawLists:cons(points(DrawList),DrawLists),
 DrawLists:cons(key =concat("period ", string(Denominator)),DrawLists),
 DrawLists:cons(color=ColorList[Denominator],DrawLists)
 
 
)$ 


/* ----------------- draw ------------  */
load(draw); 

draw2d(
  terminal  = png,
  file_name = "dist",
  title = "Distance between point of critical orbit and alfa fixed point in parabolic cases ",
  user_preamble = "",
  xlabel     = "rotation = iteration/period",
  ylabel     = "distance from zn to alfa fixed point",
  points_joined =false,
  point_size    =  0.6,
  point_type = filled_circle,
  
  
  
  DrawLists
);
Category:Images with Maxima CAS source code Category:Gnuplot graphics Category:Critical orbits Category:Convergence (calculus)
Category:CC-BY-SA-3.0 Category:Convergence (calculus) Category:Critical orbits Category:Gnuplot graphics Category:Images with Maxima CAS source code Category:Self-published work