File:VFPt superconductor ball E-field potential+contour.svg

Summary

{{Information

|description=

English: Deformation of a previously homogeneous electric field around a perfect conducting ball (e.g. iron or a superconductor). Inside the sphere the field vanishes. The field lines are accurately computed. The electric potential is drawn as a background color field and uniformely spaced equipotential lines are shown.

|date=2019-09-27 |source=Own work |author=Geek3 |permission= |other versions= |other fields={{Igen|VectorFieldPlot|+|c1=

  1. paste this code at the end of VectorFieldPlot 2.3

doc = FieldplotDocument('VFPt_superconductor_ball_E-field_potential+contour',

   width=600, height=600, commons=True)

unit = 100. field_direction = [0.0, -1.0] sphere = {'p':sc.array([0., 0.]), 'r':1.2} field = Field([['homogeneous', {'Fx':field_direction[0], 'Fy':field_direction[1]}],

   ['dipole', {'x':sphere['p'][0], 'y':sphere['p'][1],
    'px':4*pi*sphere['r']**3*field_direction[0],
    'py':4*pi*sphere['r']**3*field_direction[1]}]])

def pot(xy):

   if vabs(xy) <= sphere['r']:
       return 1e-8 * xy[1] # zero potential inside metal sphere
   return field.V(xy)

doc.draw_contours(func=pot, levels=sc.linspace(-3, 3, 11))

U0 = pot([3, 3]) doc.draw_scalar_field(func=pot, cmap=doc.cmap_AqYlFs, vmin=-U0, vmax=U0)

  1. draw the superconducting ball

ball = doc.draw_object('g', {'id':'metal_ball'}) grad = doc.draw_object('radialGradient', {'id':'metal_spot', 'cx':'0.53', 'cy':'0.54',

   'r':'0.55', 'fx':'0.65', 'fy':'0.7', 'gradientUnits':'objectBoundingBox'}, group=ball)

for col, of in (('#fff', 0), ('#e7e7e7', 0.15), ('#ddd', 0.25), ('#aaa', 0.7), ('#888', 0.9), ('#666', 1)):

   doc.draw_object('stop', {'offset':of, 'stop-color':col}, group=grad)

doc.draw_object('circle', {'cx':sphere['p'][0], 'cy':sphere['p'][1], 'r':str(sphere['r']),

   'style':'fill:url(#metal_spot); stroke:#000; stroke-width:0.02'}, group=ball)

ball_charges = doc.draw_object('g', {'style':'stroke-width:0.02; stroke-linecap:square'}, group=ball)

n_lines = 22 for i in range(n_lines):

   a = -3.3 + 6.6 * (0.5 + i) / n_lines
   line = FieldLine(field, [a, 6], maxr=12, pass_dipoles=1,
       bounds_func=lambda xy: sphere['r'] - vabs(xy - sphere['p']))
   doc.draw_line(line, linewidth=2.4, arrows_style=
       {'at_potentials':[-2.1, 2.1]})
   
   # draw little charge signs near the surface
   path_minus = 'M {0:.5f},0 h {1:.5f}'.format(-2./unit, 4./unit)
   path_plus = 'M {0:.5f},0 h {1:.5f} M 0,{0:.5f} v {1:.5f}'.format(-2./unit, 4./unit)
   
   # check if fieldline crosses sphere surface
   tlist = sc.linspace(0., 1., 101)
   for i in range(1, len(tlist)):
       in0 = vabs(line.get_position(tlist[i-1]) - sphere['p']) <= sphere['r']
       in1 = vabs(line.get_position(tlist[i]) - sphere['p']) <= sphere['r']
       if in0 != in1:
           # find the point where the field line cuts the surface
           t = op.brentq(lambda t: vabs(line.get_position(t)
               - sphere['p']) - sphere['r'], tlist[i-1], tlist[i])
           pr = line.get_position(t) - sphere['p']
           cpos = 0.92 * sphere['r'] * pr / vabs(pr)
           if in1:
               path_d = path_minus
           else:
               path_d = path_plus
           doc.draw_object('path', {'stroke':'black', 'd':path_d,
               'transform':'translate({:.5f},{:.5f})'.format(
                   round(unit*cpos[0])/unit, round(unit*cpos[1])/unit)},
                   group=ball_charges)

doc.write() }} }}

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Category:CC-BY-SA-4.0#VFPt%20superconductor%20ball%20E-field%20potential+contour.svg
Category:Self-published work Category:Field lines around conducting surfaces Category:Electric potential Category:Photos by User:Geek3 Category:VFPt electric and magnetic fields (image set)
Category:CC-BY-SA-4.0 Category:Electric potential Category:Field lines around conducting surfaces Category:Photos by User:Geek3 Category:Self-published work Category:VFPt electric and magnetic fields (image set) Category:Valid SVG created with VectorFieldPlot code