File:VFPt superconductor ball E-field potential+contour.svg
Summary
{{Information
|description=
|date=2019-09-27 |source=Own work |author=Geek3 |permission= |other versions= |other fields={{Igen|VectorFieldPlot|+|c1=
- paste this code at the end of VectorFieldPlot 2.3
doc = FieldplotDocument('VFPt_superconductor_ball_E-field_potential+contour',
width=600, height=600, commons=True)
unit = 100. field_direction = [0.0, -1.0] sphere = {'p':sc.array([0., 0.]), 'r':1.2} field = Field([['homogeneous', {'Fx':field_direction[0], 'Fy':field_direction[1]}],
['dipole', {'x':sphere['p'][0], 'y':sphere['p'][1], 'px':4*pi*sphere['r']**3*field_direction[0], 'py':4*pi*sphere['r']**3*field_direction[1]}]])
def pot(xy):
if vabs(xy) <= sphere['r']: return 1e-8 * xy[1] # zero potential inside metal sphere return field.V(xy)
doc.draw_contours(func=pot, levels=sc.linspace(-3, 3, 11))
U0 = pot([3, 3]) doc.draw_scalar_field(func=pot, cmap=doc.cmap_AqYlFs, vmin=-U0, vmax=U0)
- draw the superconducting ball
ball = doc.draw_object('g', {'id':'metal_ball'}) grad = doc.draw_object('radialGradient', {'id':'metal_spot', 'cx':'0.53', 'cy':'0.54',
'r':'0.55', 'fx':'0.65', 'fy':'0.7', 'gradientUnits':'objectBoundingBox'}, group=ball)
for col, of in (('#fff', 0), ('#e7e7e7', 0.15), ('#ddd', 0.25), ('#aaa', 0.7), ('#888', 0.9), ('#666', 1)):
doc.draw_object('stop', {'offset':of, 'stop-color':col}, group=grad)
doc.draw_object('circle', {'cx':sphere['p'][0], 'cy':sphere['p'][1], 'r':str(sphere['r']),
'style':'fill:url(#metal_spot); stroke:#000; stroke-width:0.02'}, group=ball)
ball_charges = doc.draw_object('g', {'style':'stroke-width:0.02; stroke-linecap:square'}, group=ball)
n_lines = 22 for i in range(n_lines):
a = -3.3 + 6.6 * (0.5 + i) / n_lines line = FieldLine(field, [a, 6], maxr=12, pass_dipoles=1, bounds_func=lambda xy: sphere['r'] - vabs(xy - sphere['p'])) doc.draw_line(line, linewidth=2.4, arrows_style= {'at_potentials':[-2.1, 2.1]}) # draw little charge signs near the surface path_minus = 'M {0:.5f},0 h {1:.5f}'.format(-2./unit, 4./unit) path_plus = 'M {0:.5f},0 h {1:.5f} M 0,{0:.5f} v {1:.5f}'.format(-2./unit, 4./unit) # check if fieldline crosses sphere surface tlist = sc.linspace(0., 1., 101) for i in range(1, len(tlist)): in0 = vabs(line.get_position(tlist[i-1]) - sphere['p']) <= sphere['r'] in1 = vabs(line.get_position(tlist[i]) - sphere['p']) <= sphere['r'] if in0 != in1: # find the point where the field line cuts the surface t = op.brentq(lambda t: vabs(line.get_position(t) - sphere['p']) - sphere['r'], tlist[i-1], tlist[i]) pr = line.get_position(t) - sphere['p'] cpos = 0.92 * sphere['r'] * pr / vabs(pr) if in1: path_d = path_minus else: path_d = path_plus doc.draw_object('path', {'stroke':'black', 'd':path_d, 'transform':'translate({:.5f},{:.5f})'.format( round(unit*cpos[0])/unit, round(unit*cpos[1])/unit)}, group=ball_charges)
doc.write() }} }}
Licensing
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.