File:Rational Elliptic Function (abs, n=3, x=(0,5)).svg
Description |
English: A graph of thr absolute value of the third-order rational elliptic function, R3(ξ,x) over the interval [0,5]. Here, ξ (the selectivity factor) is 1.4. Also shown is the discrimination factor, Ln. |
||
Date | |||
Source | Own work | ||
Author | Inductiveload | ||
Permission (Reusing this file) |
|
Mathematica Code
xp2[xi_] := Module[{g, num, den}, g = Sqrt[4*xi^2 + (4*xi^2*(xi^2 - 1))^(2/3)]; num = 2*xi^2*Sqrt[g]; den = Sqrt[8*xi^2*(xi^2 + 1) + 12*g*xi^2 - g^3] - Sqrt[g^3]; num/den ]; xz2[xi_] := xi^2/xp2[xi]; t[xi_] := Sqrt[1 - 1/xi^2]; (*Use the particular forms for these low-order REFs*) r1[xi_, x_] := x; r2[xi_, x_] := ((t[xi] + 1)*x^2 - 1)/((t[xi] - 1)*x^2 + 1); r3[xi_, x_] := x*((1 - xp2[xi])*(x^2 - xz2[xi]))/((1 - xz2[xi])*(x^2 - xp2[xi])); r4[xi_, x_] := Module[{num, den}, num = (1 + t[xi]) (1 + Sqrt[t[xi]])^2*x^4 - 2 (1 + t[xi]) (1 + Sqrt[t[xi]])*x^2 + 1; den = (1 + t[xi]) (1 - Sqrt[t[xi]])^2*x^4 - 2 (1 + t[xi]) (1 - Sqrt[t[xi]])*x^2 + 1; num/den ]; LogPlot[ xi = 1.4; Abs[r3[xi, x]], {x, 0, 5}, PlotRange -> {0.01, 1000}]Category:Rational functions Category:SVG x-y functions Category:Elliptic functions Category:Images with Mathematica source code