File:Rational Elliptic Function (abs, n=3, x=(0,5)).svg

Description
English: A graph of thr absolute value of the third-order rational elliptic function, R3(ξ,x) over the interval [0,5]. Here, ξ (the selectivity factor) is 1.4. Also shown is the discrimination factor, Ln.
Date
Source Own work
Author Inductiveload
Permission
(Reusing this file)
Public domain I, the copyright holder of this work, release this work into the public domain. This applies worldwide.
In some countries this may not be legally possible; if so:
I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.
Category:Self-published work#Rational%20Elliptic%20Function%20(abs,%20n=3,%20x=(0,5)).svgCategory:PD-self#Rational%20Elliptic%20Function%20(abs,%20n=3,%20x=(0,5)).svg

Mathematica Code

xp2[xi_] :=
  Module[{g, num, den},
   g = Sqrt[4*xi^2 + (4*xi^2*(xi^2 - 1))^(2/3)];
   num = 2*xi^2*Sqrt[g];
   den = Sqrt[8*xi^2*(xi^2 + 1) + 12*g*xi^2 - g^3] - Sqrt[g^3];
   num/den
   ];
xz2[xi_] := xi^2/xp2[xi];

t[xi_] := Sqrt[1 - 1/xi^2];

(*Use the particular forms for these low-order REFs*)
r1[xi_, x_] := x;
r2[xi_, x_] := ((t[xi] + 1)*x^2 - 1)/((t[xi] - 1)*x^2 + 1);
r3[xi_, x_] := 
  x*((1 - xp2[xi])*(x^2 - xz2[xi]))/((1 - xz2[xi])*(x^2 - 
        xp2[xi]));
r4[xi_, x_] :=
  Module[{num, den},
   num = (1 + t[xi]) (1 + Sqrt[t[xi]])^2*x^4 - 
     2 (1 + t[xi]) (1 + Sqrt[t[xi]])*x^2 + 1;
   den = (1 + t[xi]) (1 - Sqrt[t[xi]])^2*x^4 - 
     2 (1 + t[xi]) (1 - Sqrt[t[xi]])*x^2 + 1;
   num/den
   ];
   
LogPlot[
 xi = 1.4;
 Abs[r3[xi, x]],
 {x, 0, 5},
 PlotRange -> {0.01, 1000}]
Category:Rational functions Category:SVG x-y functions Category:Elliptic functions Category:Images with Mathematica source code
Category:Elliptic functions Category:Images with Mathematica source code Category:PD-self Category:Rational functions Category:SVG x-y functions Category:Self-published work