File:QHO-coherentstate2-animation.gif
Summary
Description |
English: Animation of the probability distribution of the quantum wave function of a coherent state of α=2 in a Quantum harmonic oscillator. The gaussian wave packet oscillates sinusoidally in the harmonic potential. |
Date | |
Source |
Own work Category:PNG created with Matplotlib#QHO-coherentstate2-animation.gif |
Author | Geek3 |
Other versions | QHO-coherentstate2-animation-color.gif |
Source Code
The plot was generated with Matplotlib.
Python Matplotlib source code |
---|
#!/usr/bin/python
# -*- coding: utf8 -*-
from math import *
import matplotlib.pyplot as plt
from matplotlib import animation
import numpy as np
plt.rc('path', snap=False)
plt.rc('mathtext', default='regular')
# image settings
fname = 'QHO-coherentstate2-animation'
width, height = 300, 200
ml, mr, mt, mb = 35, 8, 22, 45
x0, x1 = -5.5, 5.5
y0, y1 = 0, 0.7
nframes = 80
fps = 20
# physics settings
alpha0 = 2.0
omega = 2*pi
def coherent(alpha, x, omega, t, l=1.0):
# Definition of coherent states
# https://en.wikipedia.org/wiki/Coherent_states
psi = (pi*l**2)**-0.25 * np.exp(
-0.5/l**2 * (x - sqrt(2)*l * alpha.real)**2
+ 1j*sqrt(2)/l * alpha.imag * x
+ 0.5j * (alpha0**2*sin(2*omega*t) - omega*t))
return psi
def animate(nframe):
print str(nframe) + ' ',
t = float(nframe) / nframes # animation repeats after t=1.0
alpha = e ** (-1j * omega * t) * alpha0
ax.cla()
ax.axis((x0, x1, y0, y1))
ax.grid(True)
x = np.linspace(x0, x1, 2 * width)
psi = coherent(alpha, x, omega, t)
y = np.abs(psi)**2
plt.plot(x, y, lw=2, color='#0000cc')
ax.set_yticks(ax.get_yticks()[:-1])
# create figure and axes
plt.close('all')
fig, ax = plt.subplots(1, figsize=(width/100., height/100.))
bounds = [float(ml)/width, float(mb)/height,
1.0 - float(mr)/width, 1.0 - float(mt)/height]
fig.subplots_adjust(left=bounds[0], bottom=bounds[1],
right=bounds[2], top=bounds[3], hspace=0)
# axes labels
fig.text(0.5 + 0.5 * float(ml-mr)/width, 4./height,
r'$x\ \ [(\hbar/(m\omega))^{1/2}]$', ha='center')
fig.text(5./width, 1.0, '$|\psi|^2$', va='top')
anim = animation.FuncAnimation(fig, animate, frames=nframes)
anim.save(fname + '_.gif', writer='imagemagick', fps=fps)
import os
# compress with gifsicle
commons = 'https://commons.wikimedia.org/wiki/File:'
cmd = 'gifsicle -O3 -k64 --careful --comment="' + commons + fname + '.gif"'
cmd += ' < ' + fname + '_.gif > ' + fname + '.gif'
if os.system(cmd) == 0:
os.remove(fname + '_.gif')
else:
print 'warning: gifsicle not found!'
os.remove(fname + '.gif')
os.rename(fname + '_.gif', fname + '.gif')
|
Licensing
I, the copyright holder of this work, hereby publish it under the following licenses:
![]() |
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License. |
This file is licensed under the Creative Commons Attribution 3.0 Unported license.
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
You may select the license of your choice.
Category:1D quantum harmonic oscillators
Category:Animated GIF files
Category:Animations of quantum wave functions
Category:CC-BY-3.0
Category:Coherent states
Category:GFDL
Category:GIF animations assembled with gifsicle
Category:License migration redundant
Category:PNG created with Matplotlib
Category:Photos by User:Geek3
Category:Self-published work